912 resultados para Juvenile and Mature Wood
Resumo:
Reducing shark bycatch and depredation (i.e., damage caused by sharks to gear, bait, and desired fish species) in pelagic longline fisheries targeting tunas and swordfish is a priority. Electropositive metals (i.e., a mixture of the lanthanide elements lanthanum, cerium, neodymium, and praseodymium) have been shown to deter spiny dogfish (Squalus acanthias, primarily a coastal species) from attacking bait, presumably because of interactions with the electroreceptive system of this shark. We undertook to determine the possible effectiveness of electropositive metals for reducing the interactions of pelagic sharks with longline gear, using sandbar sharks (Carcharhinus plumbeus, family Carcharhinidae) as a model species. The presence of electropositive metal deterred feeding in groups of juvenile sandbar sharks and altered the swimming patterns of individuals in the absence of food motivation (these individuals generally avoided approaching electropositive metal closer than ~100 cm). The former effect was relatively short-lived however; primarily (we assume) because competition with other individuals increased feeding motivation. In field trials with bottom longline gear, electropositive metal placed within ~10 cm of the hooks reduced the catch of sandbar sharks by approximately two thirds, compared to the catch on hooks in the proximity of plastic pieces of similar dimensions. Electropositive metals therefore appear to have the potential to reduce shark interactions in pelagic longline fisheries, although the optimal mass, shape, composition, and distance to baited hooks remain to be determined.
Resumo:
We estimated annual abundance of juvenile blue (Sebastes mystinus), yellowtail (S. f lavidus), and black (S. melanops) rockfish off northern California over 21 years and evaluated the relationship of abundance to oceanographic variables (sea level anomaly, nearshore temperature, and offshore Ekman transport). Although mean annual abundance was highly variable (0.01−181 fish/minute), trends were similar for the three species. Sea level anomaly and nearshore temperature had the strongest relationship with interannual variation in rockfish abundance, and offshore Ekman transport did not correlate with abundance. Oceanographic events occurring in February and March (i.e., during the larval stage) had the strongest relationship with juvenile abundance, which indicates that year-class strength is determined during the larval stage. Also of note, the annual abundance of juvenile yellowtail rockfish was positively correlated with year-class strength of adult yellowtail rockfish; this finding would indicate the importance of studying juvenile abundance surveys for management purposes.
Resumo:
Standard and routine metabolic rates (SMRs and RMRs, respectively) of juvenile sandbar sharks (Carcharhinus plumbeus) were measured over a range of body sizes (n=34) and temperatures normally associated with western Atlantic coastal nursery areas. The mean SMR Q10 (increase in metabolic rate with temperature) was 2.9 ±0.2. Heart rate decreased with increasing body mass but increased with temperature at a Q10 of 1.8−2.2. Self-paired measures of SMR and RMR were obtained for 15 individuals. Routine metabolic rate averaged 1.8 ±0.1 times the SMR and was not correlated with body mass. Assuming the maximum metabolic rate of sandbar sharks is 1.8−2.75 times the SMR (as is observed in other elasmobranch species), sandbar sharks are using between 34% and 100% of their metabolic scope just to sustain their routine continuous activity. This limitation may help to explain their slow individual and population growth rates, as well as the slow recoveries from overfishing of many shark stocks worl
Resumo:
Rockfish (Sebastes spp.) juveniles are often difficult to identify by using morphological characters. This study independently applies morphological characters and a key based on mitochondrial restriction site variation to identify juvenile rockf ishes collected in southern California during juvenile rockfish surveys. Twenty-four specimens of Sebastes were examined genetically without knowledge of the morphological assignment. Seventeen fish were identified genetically as S. semicinctus, S. goodei, S. auriculatus, S. jordani, S. levis, S. rastrelliger, and S. saxicola. Identities for the remaining fish were narrowed to two or three species: 1) three fish were either S. carnatus or S. chrysomelas; 2) one fish was either S. chlorosticus, S. eos, or S. rosenblatti; and 3) three fish could have been either S. hopkinsi or S. ovalis, the latter for which we now have distinguishing mitochondrial markers. The genetic and morphological assignments concurred except for the identity of one fish that could only be narrowed down to S. hopkinsi or S. semicinctus by using morphological characters. Genetics excluded more species from multispecies groupings than did the morphological approach, especially species within the subgenus Sebastomus. Species in the genetically unresolvable groups may be similar because of recent divergence or because of interspecies introgression.
Resumo:
Walleye pollock (Theragra chalcogramma) is widely distributed in the North Pacific Ocean and plays an important role in coastal subarctic ecosystems. The Japanese Pacific population of this species is one of the most important demersal fishes for commercial fisheries in northern Japan. The population is distributed along the Pacific coast of Hokkaido and the Tohoku area (Fig. 1), which is the southern limit of distribution of the species in the western North Pacific. In Funka Bay, the main spawning ground for this population, pollock spawn from December to March (Kendall and Nakatani, 1992). Planktonic eggs and larvae are transported into the bay, where juveniles usually remain until late July when they reach 60−85 mm in total length (Hayashi et al., 1968; Nakatani and Maeda, 1987). These juvenile pollock then migrate from Funka Bay eastward to the Doto area off southeastern Hokkaido (Honda et al., 2004). Many studies on eggs, larvae, and juveniles of the species have been conducted in or near Funka Bay, but little information is available on the ecology of the early life stages in the Tohoku area. Hashimoto and Ishito (1991) suggested that eggs are transported from Funka Bay southward to the Tohoku area by the coastal branch of the Oyashio Current, but there has been no study to verify this hypothesis.
Resumo:
The penpoint gunnel (Apodichthys flavidus) is a member of the perciform family Pholidae. Pholids, commonly referred to as gunnels, are eel-like fishes that inhabit the rocky intertidal and subtidal regions of the northern oceans and are often associated with macroalgae, such as Fucus spp. or kelp (Watson, 1996). Gunnels are ecologically important forage fishes that form part of the diet of birds and commercially important groundfish species (Hobson and Sealy, 1985; NMFS1; Golet et al., 2000). The diet of A. flavidus and other pholids comprises primarily harpactacoid copepods, gammarid amphipods, isopods, and other crustaceans (Cross, 1981). Apodichthys flavidus ranges along the west coast of North America from southern California to the Gulf of Alaska (Mecklenburg et al., 2002). Adult A. flavidus are distinguished from other pholids by their total vertebral counts, the presence of a thick and grooved first anal spine, a preanal length that is approximately 60% standard length (SL), and a dark green to light olive coloration (Yatsu, 1981). It is one of the largest pholids (up to 46 cm) and is important in the live fish trade for both home and public aquaria (Froese and Pauly2).
Resumo:
This study examined the sexual differentiation and reproductive dynamics of striped mullet (Mugil cephalus L.) in the estuaries of South Carolina. A total of 16,464 specimens were captured during the study and histological examination of sex and maturity was performed on a subsample of 3670 fish. Striped mullet were sexually undifferentiated for the first 12 months, began differentiation at 13 months, and were 90% fully differentiated by 15 to 19 months of age and 225 mm total length (TL). The defining morphological characteristics for differentiating males was the elongation of the protogonial germ tissue in a corradiating pattern towards the center of the lobe, the development of primary and secondary ducts, and the lack of any recognizable ovarian wall structure. The defining female characteristics were the formation of protogonial germ tissue into spherical germ cell nests, separation of a tissue layer from the outer epithelial layer of the lobe-forming ovarian walls, a tissue bud growing from the suspensory tissue that helped form the ovary wall, and the proliferation of oogonia and oocytes. Sexual maturation in male striped mullet first occurred at 1 year and 248 mm TL and 100% maturity occurred at age 2 and 300 mm TL. Female striped mullet first matured at 2 years and 291 mm total length and 100% maturity occurred at 400 mm TL and age 4. Because of the open ocean spawning behavior of striped mullet, all stages of maturity were observed in males and females except for functionally mature females with hydrated oocytes. The spawning season for striped mullet recruiting to South Carolina estuaries lasts from October to April; the majority of spawning activity, however, occurs from November to January. Ovarian atresia was observed to have four distinct phases. This study presents morpholog ical analysis of reproductive ontogeny in relation to size and age in South Carolina striped mullet. Because of the length of the undifferentiated gonad stage in juvenile striped mullet, previous studies have proposed the possibility of protandric hermaphrodism in this species. The results of our study indicate that striped mullet are gonochoristic but capable of exhibiting nonfunctional hermaphroditic characteristics in differentiated mature gonads.
Resumo:
Two studies were conducted in consecutive years over the time period 14 January to 1 July to determine whether labor-savings and fish growth enhancement could be achieved by stocking Tilapia rendalli directly into ponds containing weeds left from a dry period. Six replicates 200 sq. m ponds located at the Malawi National Aquaculture Centre, Domasi were drained, left dry for 63 days and natural growth of weeds was allowed. All ponds were stocked with 200 T. rendalli fingerlings (study 1) or adults (study 2) averaging 4.6 g (40 mm TL) and 47.7 (130 mm TL), respectively. For T. rendalli juveniles, final standing stock, growth and offspring production were significantly (P<0.05) better in fed than in weedy ponds. Average weight of fingerlings were significantly (P<0.05) different between the two treatments. For T. rendalli adults, final standing stock, growth and offspring production were not affected by the presence of weeds.
Resumo:
Body length measurement is an important part of growth, condition, and mortality analyses of larval and juvenile fish. If the measurements are not accurate (i.e., do not reflect real fish length), results of subsequent analyses may be affected considerably (McGurk, 1985; Fey, 1999; Porter et al., 2001). The primary cause of error in fish length measurement is shrinkage related to collection and preservation (Theilacker, 1980; Hay, 1981; Butler, 1992; Fey, 1999). The magnitude of shrinkage depends on many factors, namely the duration and speed of the collection tow, abundance of other planktonic organisms in the sample (Theilacker, 1980; Hay, 1981; Jennings, 1991), the type and strength of the preservative (Hay, 1982), and the species of fish (Jennings, 1991; Fey, 1999). Further, fish size affects shrinkage (Fowler and Smith, 1983; Fey, 1999, 2001), indicating that live length should be modeled as a function of preserved length (Pepin et al., 1998; Fey, 1999).
Resumo:
Otoliths of larval and juvenile fish provide a record of age, size, growth, and development (Campana and Neilson, 1985; Thorrold and Hare, 2002). However, determining the time of first increment formation in otoliths (Campana, 2001) and assessing the accuracy (deviation from real age) and precision (repeatability of increment counts from the same otolith) of increment counts are prerequisites for using otoliths to study the life history of fish (Campana and Moksness, 1991). For most fish species, first increment deposition occurs either at hatching, a day after hatching, or after first feeding and yolksac absorption (Jones, 1986; Thorrold and Hare, 2002). Increment deposition before hatching also occurs (Barkmann and Beck, 1976; Radtke and Dean, 1982). If first increment deposition does not occur at hatching, the standard procedure is to add a predetermined number to increment counts to estimate fish age (Campana and Neilson, 1985).
Resumo:
Light traps are one of a number of different gears used to sample pelagic larval and juvenile fishes. In contrast to conventional towed nets, light traps primarily collect larger size classes, including settlement-size larvae (Choat et al., 1993; Hickford and Schiel, 1999 ; Hernandez and Shaw, 2003), and, therefore, have become important tools for discerning recruitment dynamics (Sponaugle and Cowen, 1996; Wilson, 2001). The relative ease with which multiple synoptic light trap samples can be taken means that larval distribution patterns can be mapped with greater spatial resolution (Doherty, 1987). Light traps are also useful for sampling shallow or structurally complex habitats where towed nets are ineffective or prohibited (Gregory and Powles, 1985; Brogan, 1994; Hernandez and Shaw, 2003).
Resumo:
This paper provides the first description of the mangrove cockle, Anadara spp., fisheries throughout their Latin American range along the Pacific coast from Mexico to Peru. Two species, A. tuberculosa and A. grandis, are found over the entire range, while A. similis occurs from El Salvador to Peru. Anadara tuberculosa is by far the most abundant, while A. grandis has declined in abundance during recent decades. Anadara tuberculosa and A. similis occur in level mud sediments in mangrove swamps, comprised mostly of Rhizophora mangle, which line the main-lands and islands of lagoons, whereas A. grandis inhabits intertidal mud flats along the edges of the same mangrove swamps. All harvested cockles are sexually mature. Gametogenesis of the three species occurs year round, and juvenile cockles grow rap-idly. Cockle densities at sizes at least 16–42 mm long ranged from 7 to 24/m2 in Mexico. Macrofaunal associates of cockles include crustaceans, gastropods, and finfishes. The mangrove swamps are in nearly pristine condition in every country except Honduras, Ecuador, and Peru, where shrimp farms constructed in the 1980’s and 1990’s have destroyed some mangrove zones. In addition, Hurricane Mitch destroyed some Honduran mangrove swamps in 1998. About 15,000 fishermen, including men, women, and children, harvest the cockles. Ecuador has the largest tabulated number of fishermen, 5,055, while Peru has the fewest, 75. Colombia has a large number, perhaps exceeding that in Ecuador, but a detailed census of them has never been made. The fishermen are poor and live a meager existence; they do not earn sufficient money to purchase adequate food to allow their full health and growth potential. They travel almost daily from their villages to the harvesting areas in wooden canoes and fiberglass boats at low tide when they can walk into the mangrove swamps to harvest cockles for about 4 h. Harvest rates, which vary among countries owing to differences in cockle abundances, range from about 50 cockles/fisherman/day in El Salvador and Honduras to 500–1,000/ fisherman/day in Mexico. The fishermen return to their villages and sell the cockles to dealers, who sell them mainly whole to market outlets within their countries, but there is some exporting to adjacent countries. An important food in most countries, the cockles are eaten in seviche, raw on the half-shell, and cooked with rice. The cockles are under heavy harvesting pressure, except in Mexico, but stocks are not yet being depleted because they are harvested at sizes which have already spawned. Also some spawning stocks lie within dense mangrove stands which the fishermen cannot reach. Consumers fortunately desire the largest cockles, spurning the smallest. Cockles are important to the people, and efforts to reduce the harvests to prevent overfishing would lead to severe economic suffering in the fishing communities. Pro-grams to conserve and improve cockle habitats may be the most judicious actions to take. Preserving the mangrove swamps intact, increasing their sizes where possible, and controlling cockle predators would lead to an increase in cockle abundance and harvests. Fishes that prey on juvenile cockles might be seined along the edges of swamps before the tide rises and they swim into the swamps to feed. Transplanting mangrove seedlings to suitable areas might increase the size of those habitats. The numbers of fishermen may increase in the future, because most adults now have several children. If new fishermen are tempted to harvest small, immature cockles and stocks are not increased, minimum size rules for harvestable cockles could be implemented and enforced to ensure adequate spawning.