973 resultados para Jackson, Marlin
Resumo:
We investigate how growth parameters may be chosen to obtain high quality GaAs nanowires suitable for optoelectronic device applications. Growth temperature and precursor flows have a significant effect on the morphology, crystallographic quality, intrinsic doping and optical properties of the resulting nanowires. Significantly, we find that low growth temperature and high arsine flow rate improve nanowire optical properties, reduce carbon impurity incorporation and drastically reduce planar crystallographic defects. Additionally, cladding the GaAs nanowire cores in an AlGaAs shell enhances emission efficiency. These high quality nanowires should create new opportunities for optoelectronic devices. © 2008 IEEE.
Resumo:
CW and time-resolved photoluminescence measurements are used to investigate exciton recombination dynamics in GaAsAlGaAs heterostructure nanowires grown with a recently developed technique which minimizes twinning. A thin capping layer is deposited to eliminate the possibility of oxidation of the AlGaAs shell as a source of oxygen defects in the GaAs core. We observe exciton lifetimes of ∼1 ns, comparable to high quality two-dimensional double heterostructures. These GaAs nanowires allow one to observe state filling and many-body effects resulting from the increased carrier densities accessible with pulsed laser excitation. © 2008 American Institute of Physics.
Resumo:
We use low temperature spatially resolved photoluminescence imaging to study optical properties and electronic states of single CdS and GaAs/AlGaAs core-shell nanowires. © 2007 American Institute of Physics.
Resumo:
We use polarization-resolved and temperature-dependent photoluminescence of single zincblende (ZB) (cubic) and wurtzite (WZ) (hexagonal) InP nanowires to probe differences in selection rules and bandgaps between these two semiconductor nanostructures. The WZ nanowires exhibit a bandgap 80 meV higher in energy than the ZB nanowires. The temperature dependence of the PL is similar but not identical for the WZ and ZB nanowires. We find that ZB nanowires exhibit strong polarization parallel to the nanowire axis, while the WZ nanowires exhibit polarized emission perpendicular to the nanowire axis. This behavior is interpreted in terms of the different selection rules for WZ and ZB crystal structures. © 2007 American Institute of Physics.
Resumo:
Temperature-dependent polarized microphotoluminescence measurements of single GaAsAlGaAs core-shell nanowires are used to probe their electronic states. The low-temperature emission from these wires is strongly enhanced compared with that observed in bare GaAs nanowires and is strongly polarized, reflecting the dielectric mismatch between the nanowire and the surrounding air. The temperature-dependent band gap of the nanowires is seen to be somewhat different from that observed in bulk GaAs, and the PL rapidly quenches above 120 K, with an activation energy of 17 meV reflecting the presence of nonradiative defects. © 2006 American Institute of Physics.
Resumo:
Freshly prepared Fe and Al hydrous oxide gels and the amorphous product of heating gibbsite selectively adsorbed traces of Ca and Sr from solutions containing a large excess (∼1M) of NaNO3. The fraction of the added Ca (Sr) adsorbed depended principally on the suspension pH, the amount of solid present, and to a lesser extent on the NaNO3 concentration. Significant Ca and Sr adsorption occurred on the Fe and Al gels, and heated gibbsite, at pH values below the points of zero charge (8.1, 9.4, and 8.3±0.1, respectively), indicating specific adsorption. The pH (± 0.10) at which 50% of the Ca was adsorbed (pH50) occurred at pH 7.15 for the Fe gel (0.093M Fe), 8.35 for the Al gel (0.093M Al), and 6.70 for the heated gibbsite (0.181M Al); for Sr, the pH50 values were 7.10, 9.00, and 6.45, respectively. For the Fe gel and heated gibbsite, an empirical model based on the law of mass action described the pH dependence of adsorption reasonably well and suggested that for each Ca or Sr fraction adsorbed, approximately one proton was released. Failure of the Al gel to fit this model may have resulted from its rapid aging.