971 resultados para Isomerization Equilibrium
Resumo:
Within the skeletal muscle cell at the onset of muscular contraction, phosphocreatine (PCr) represents the most immediate reserve for the rephosphorylation of adenosine triphosphate (ATP). As a result, its concentration can be reduced to less than 30% of resting levels during intense exercise. As a fall in the level of PCr appears to adversely affect muscle contraction, and therefore power output in a subsequent bout, maximising the rate of PCr resynthesis during a brief recovery period will be of benefit to an athlete involved in activities which demand intermittent exercise. Although this resynthesis process simply involves the rephosphorylation of creatine by aerobically produced ATP (with the release of protons), it has both a fast and slow component, each proceeding at a rate that is controlled by different components of the creatine kinase equilibrium. The initial fast phase appears to proceed at a rate independent of muscle pH. Instead, its rate appears to be controlled by adenosine diphosphate (ADP) levels; either directly through its free cytosolic concentration, or indirectly, through its effect on the free energy of ATP hydrolysis. Once this fast phase of recovery is complete, there is a secondary slower phase that appears almost certainly rate-dependant on the return of the muscle cell to homeostatic intracellular pH. Given the importance of oxidative phosphorylation in this resynthesis process, those individuals with an elevated aerobic power should be able to resynthesise PCr at a more rapid rate than their sedentary counterparts. However, results from studies that have used phosphorus nuclear magnetic resonance (P-31-NMR) spectroscopy, have been somewhat inconsistent with respect to the relationship between aerobic power and PCr recovery following intense exercise. Because of the methodological constraints that appear to have limited a number of these studies, further research in this area is warranted.
Resumo:
The study of viral-based processes is hampered by (a) their complex, transient nature, (b) the instability of products, and (c) the lack of accurate diagnostic assays. Here, we describe the use of real-time quantitative polymerase chain reaction to characterize baculoviral infection. Baculovirus DNA content doubles every 1.7 h from 6 h post-infection until replication is halted at the onset of budding. No dynamic equilibrium exists between replication and release, and the kinetics are independent of the cell density at the time of infection. No more than 16% of the intracellular virus copies bud from the cell. (C) 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 476-480, 2002; DOI 10.1002/bit.10126.
Resumo:
Acyl glucuronides are reactive metabolites of carboxylate drugs, able to undergo a number of reactions in vitro and in vivo, including isomerization via intramolecular rearrangement and covalent adduct formation with proteins. The intrinsic reactivity of a particular acyl glucuronide depends upon the chemical makeup of the drug moiety. The least reactive acyl glucuronide yet reported is valproic acid acyl glucuronide (VPA-G), which is the major metabolite of the antiepileptic agent valproic acid (VPA). In this study, we showed that both VPA-G and its rearrangement isomers (iso-VPA-G) interacted with bovine brain microtubular protein (MTP, comprised of 85% tubulin and 15% microtubule associated proteins {MAPs}). MTP was incubated with VPA, VPA-G and iso-VPA-G for 2 h at room temperature and pH 7.5 at various concentrations up to 4 mM. VPA-G and iso-VPA-G caused dose-dependent inhibition of assembly of MTP into microtubules, with 50% inhibition (IC50) values of 1.0 and 0.2 mM respectively, suggesting that iso-VPA-G has five times more inhibitory potential than VPA-G. VPA itself did not inhibit microtubule formation except at very high concentrations (greater than or equal to2 mM). Dialysis to remove unbound VPA-G and iso-VPA-G (prior to the assembly assay) diminished inhibition while not removing it. Comparison of covalent binding of VPA-G and iso-VPA-G (using [C-14]-labelled species) showed that adduct formation was much greater for iso-vTA-G. When [C-14]-iso-VPA-G was reacted with MTP in the presence of sodium cyanide (to stabilize glycation adducts), subsequent separation into tubulin and MAPs fractions by ion exchange chromatography revealed that 78 and 22% of the covalent binding occurred with the MAPs and tubulin fractions respectively. These experiments support the notion of both covalent and reversible binding playing parts in the inhibition of microtubule formation from MTP (though the acyl glucuronide of VPA is less important than its rearrangement isomers in this regard), and that both tubulin and (perhaps more importantly) MAPs form adducts with acyl glucuronides. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The pseudoternary section FeO-ZnO-(CaO + SiO2) with a CaO/SiO2 weight ratio of 0.71 in equilibrium with metallic iron has been experimentally investigated in the temperature range from 1000 degreesC to 1300 degreesC (1273 to 1573 K). The liquidus surface in this pseudoternary. section has been determined in the composition range of 0 to 33 wt pct ZnO and 30 to 70 wt pct (CaO + SiO2)The system contains primary-phase fields of wustite (FexZn1-xO1+y), zincite (ZnzFe1-zO), fayalite (FewZn2-wSiO4), melilite (Ca2ZnuFe1-uSi2O7), and pseudowollastonite (CaSiO3). The phase equilibria involving the liquid phase and the solid solutions have also been measured.
Resumo:
This paper outlines research on the processes taking place within the coal mineral matter at high temperatures and development of the relationship between ash fusion temperatures (AFT) and phase equilibria of the coal ash slags. A new thermodynamic database for the Al-Ca-Fe-O-Si system developed by the author was used in conjunction with the thermodynamic computer package F*A*C*T for these purposes. In addition, high temperature experimental studies were undertaken that involved heat treatment and quenching of the ash cones followed by the analyses using different techniques. The study provided new information on the processes taking place during AFT test and demonstrated the validity of the AFTs predictions with F*A*C*T. Examples of practical applications of the AFT prediction method are given in the paper. The results of this study are important not only for the AFT predictions, but also in general for the application of phase equilibrium science to the characterisation of the coal mineral matter interactions at high temperature. (C) 2002 Elsevier Science Ltd. All rights reserved.
Mineral chemistry, whole-rock compositions, and petrogenesis of leg 176 gabbros: Data and discussion
Resumo:
We report mineral chemistry, whole-rock major element compositions, and trace element analyses on Hole 735B samples drilled and selected during Leg 176. We discuss these data, together with Leg 176 shipboard data and Leg 118 sample data from the literature, in terms of primary igneous petrogenesis. Despite mineral compositional variation in a given sample, major constituent minerals in Hole 735B gabbroic rocks display good chemical equilibrium as shown by significant correlations among Mg# (= Mg/[Mg+Fe2+]) of olivine, clinopyroxene, and orthopyroxene and An (=Ca/[Ca+Na]) of plagioclase. This indicates that the mineral assemblages olivine + plagioclase in troctolite, plagioclase + clinopyroxene in gabbro, plagioclases + clinopyroxene + olivine in olivine gabbro, and plagioclase + clinopyroxene + olivine + orthopyroxene in gabbronorite, and so on, have all coprecipitated from their respective parental melts. Fe-Ti oxides (ilmenite and titanomagnetite), which are ubiquitous in most of these rocks, are not in chemical equilibrium with olivine, clinopyroxene, and plagioclase, but precipitated later at lower temperatures. Disseminated oxides in some samples may have precipitated from trapped Fe-Ti–rich melts. Oxides that concentrate along shear bands/zones may mark zones of melt coalescence/transport expelled from the cumulate sequence as a result of compaction or filter pressing. Bulk Hole 735B is of cumulate composition. The most primitive olivine, with Fo = 0.842, in Hole 735B suggests that the most primitive melt parental to Hole 735B lithologies must have Mg# ≤ 0.637, which is significantly less than Mg# = 0.714 of bulk Hole 735B.
Resumo:
The mechanism underlying segregation in liquid fluidized beds is investigated in this paper, A binary fluidized bed system not at a stable equilibrium condition. is modelled in the literature as forming a mixed part-corresponding to stable mixture-at the bottom of the bed and a pure layer of excess components always floating on the mixed part. On the basis of this model: (0 comprehensive criteria for binary particles of any type to mix/segregate, and (ii) mixing, segregation regime map in terms of size ratio and density ratio of the particles for a given fluidizing medium, are established in this work. Therefore, knowing the properties of given particles, a second type of particles can be chosen in order to avoid or to promote segregation according to the particular process requirements. The model is then advanced for multicomponent fluidized beds and validated against experimental results observed for ternary fluidized beds. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The effect of heat treatment on the structure of an Australian semi-anthracite char was studied in detail in the 850-1150degreesC temperature range using XRD, HRTEM, and electrical resistivity techniques. It was found that the carbon crystallite size in the char does not change significantly during heat treatment in the temperature range studied, for both the raw coal and its ash-free derivative obtained by acid treatment. However, the fraction of the organized carbon in the raw coal chars, determined by XRD, increased with increase of heat treatment time and temperature, while that for the ash-free coal chars remained almost unchanged. This suggests the occurrence of catalytic ordering during heat treatment, supported by the observation that the electrical resistivity of the raw coal chars decreased with heat treatment, while that of the ash-free coal chars did not vary significantly. Further confirmatory evidence was provided by high resolution transmission electron micrographs depicting well-organized carbon layers surrounding iron particles. It is also found that the fraction of organized carbon does not reach unity, but attains an apparent equilibrium value that increases with increase in temperature, providing an apparent heat of ordering of 71.7 kJ mol(-1) in the temperature range studied. Good temperature-independent correlation was found between the electrical resistivity and the organized carbon fraction, indicating that electrical resistivity is indeed structure sensitive. Good correlation was also found between the electrical resistivity and the reactivity of coal char. All these results strongly suggest that the thermal deactivation is the result of a crystallite-perfecting process, which is effectively catalyzed by the inorganic matter in the coal char. Based on kinetic interpretation of the data it is concluded that the process is diffusion controlled, most likely involving transport of iron in the inter-crystallite nanospaces in the temperature range studied. The activation energy of this transport process is found to be very low, at about 11.8 kJ mol(-1), which is corroborated by model-free correlation of the temporal variation of organized carbon fraction as well as electrical resistivity data using the superposition method, and is suggestive of surface transport of iron. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The kinetics of single component adsorption on activated carbon is investigated here using a heterogeneous vacancy solution theory (VST) of adsorption. The adsorption isotherm is developed to account for the adsorbate non-ideality due to the size difference between the adsorbate molecule and the vacant site, while incorporating adsorbent heterogeneity through a pore-width-related potential energy. The transport process in the bidisperse carbon considers coupled mass transfer in both macropore and micropore phases simultaneously. Adsorbate diffusion in the micropore network is modeled through effective medium theory, thus considering pore network connectivity in the adsorbent, with the activation energy for adsorbate diffusion related to the adsorption energy, represented by the Steele 10-4-3 potential for carbons. Experimental data of five hydrocarbons, CO2 and SO2 on Ajax carbon at multiple temperatures, as well as three hydrocarbons on Norit carbon at three temperatures are first fitted by the heterogeneous VST model to obtain the isotherm parameters, followed by application of the kinetic model to uptake data on carbon particles of different sizes and geometry at various temperatures. For the hydrocarbons studied, the model can successfully correlate the experimental data for both adsorption equilibrium and kinetics. However, there is some deviation in the fit of the desorption kinetics for polar compounds such as CO2 and SO2, due to the inadequacy of the L-J potential model in this case. The significance of viscous transport in the micropores is also considered here and found to be negligible, consistent with recent molecular simulation studies. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A heterogeneous modified vacancy solution model of adsorption developed is evaluated. The new model considers the adsorption process through a mass-action law and is thermodynamically consistent, while maintaining the simplicity in calculation of multicomponent adsorption equilibria, as in the original vacancy solution theory. It incorporates the adsorbent heterogeneity through a pore-width-related potential energy, represented by Steele's 10-4-3 potential expression. The experimental data of various hydrocarbons, CO2 and SO2 on four different activated carbons - Ajax, Norit, Nuxit, and BPL - at multiple temperatures over a wide range of pressures were studied by the heterogeneous modified VST model to obtain the isotherm parameters and micropore-size distribution of carbons. The model successfully correlates the single-component adsorption equilibrium data for all compounds studied on various carbons. The fitting results for the vacancy occupancy parameter are consistent with the pressure change on different carbons, and the effect of pore heterogeneity is important in adsorption at elevated pressure. It predicts binary adsorption equilibria better than the IAST scheme, reflecting the significance of molecular size nonideality.
Resumo:
Anew thermodynamic approach has been developed in this paper to analyze adsorption in slitlike pores. The equilibrium is described by two thermodynamic conditions: the Helmholtz free energy must be minimal, and the grand potential functional at that minimum must be negative. This approach has led to local isotherms that describe adsorption in the form of a single layer or two layers near the pore walls. In narrow pores local isotherms have one step that could be either very sharp but continuous or discontinuous benchlike for a definite range of pore width. The latter reflects a so-called 0 --> 1 monolayer transition. In relatively wide pores, local isotherms have two steps, of which the first step corresponds to the appearance of two layers near the pore walls, while the second step corresponds to the filling of the space between these layers. All features of local isotherms are in agreement with the results obtained from the density functional theory and Monte Carlo simulations. The approach is used for determining pore size distributions of carbon materials. We illustrate this with the benzene adsorption data on activated carbon at 20, 50, and 80 degreesC, argon adsorption on activated carbon Norit ROX at 87.3 K, and nitrogen adsorption on activated carbon Norit R1 at 77.3 K.
Resumo:
A theoretical analysis of adsorption of mixtures containing subcritical adsorbates into activated carbon is presented as an extension to the theory for pure component developed earlier by Do and coworkers. In this theory, adsorption of mixtures in a pore follows a two-stage process, similar to that for pure component systems. The first stage is the layering of molecules on the surface, with the behavior of the second and higher layers resembling to that of vapor-liquid equilibrium. The second stage is the pore-filling process when the remaining pore width is small enough and the pressure is high enough to promote the pore filling with liquid mixture having the same compositions as those of the outermost molecular layer just prior to pore filling. The Kelvin equation is applied for mixtures, with the vapor pressure term being replaced by the equilibrium pressure at the compositions of the outermost layer of the liquid film. Simulations are detailed to illustrate the effects of various parameters, and the theory is tested with a number of experimental data on mixture. The predictions were very satisfactory.
Resumo:
The beta-strand conformation is unknown for short peptides in aqueous solution, yet it is a fundamental building block in proteins and the crucial recognition motif for proteolytic enzymes that enable formation and turnover of all proteins. To create a generalized scaffold as a peptidomimetic that is preorganized in a beta-strand, we individually synthesized a series of 15-22-membered macrocyclic analogues of tripeptides and analyzed their structures. Each cycle is highly constrained by two trans amide bonds and a planar aromatic ring with a short nonpeptidic linker between them. A measure of this ring strain is the restricted rotation of the component tyrosinyl aromatic ring (DeltaG(rot) 76.7 kJ mol(-1) (16-membered ring), 46.1 kJ mol(-1) (17-membered ring)) evidenced by variable temperature proton NMR spectra (DMF-d(7), 200-400 K). Unusually large amide coupling constants ((3)J(NH-CHalpha) 9-10 Hz) corresponding to large dihedral angles were detected in both protic and aprotic solvents for these macrocycles, consistent with a high degree of structure in solution. The temperature dependence of all amide NH chemical shifts (Deltadelta/T7-12 ppb/deg) precluded the presence of transannular hydrogen bonds that define alternative turn structures. Whereas similar sized conventional cyclic peptides usually exist in solution as an equilibrium mixture of multiple conformers, these macrocycles adopt a well-defined beta-strand structure even in water as revealed by 2-D NMR spectral data and by a structure calculation for the smallest (15-membered) and most constrained macrocycle. Macrocycles that are sufficiently constrained to exclusively adopt a beta-strand-mimicking structure in water may be useful pre-organized and generic templates for the design of compounds that interfere with beta-strand recognition in biology.
Resumo:
The primary sequence and three-dimensional structure of a novel peptide toxin isolated from the Australian funnel-web spider Hadronyche infensa sp. is reported. ACTX-HI:OB4219 contains 38 amino acids, including eight-cysteine residues that form four disulfide bonds. The connectivities of these disulfide bonds were previously unknown but have been unambiguously determined in this study. Three of these disulfide bonds are arranged in an inhibitor cystine-knot (ICK) motif, which is observed in a range of other disulfide-rich peptide toxins. The motif incorporates an embedded ring in the structure formed by two of the disulfides and their connecting backbone segments penetrated by a third disulfide bond. Using NMR spectroscopy, we determined that despite the isolation of a single native homologous product by RP-HPLC, ACTX-HI:OB4219 possesses two equally populated conformers in solution. These two conformers were determined to arise from cis/trans isomerization of the bond preceding Pro30. Full assignment of the NMR spectra for both conformers allowed for the calculation of their structures, revealing, the presence of a triple-stranded antiparallel sheet consistent with the inhibitor cystine-knot (ICK) motif.
Resumo:
Objective: To compare head relocation accuracy in traumatic ( whiplash), insidious onset neck pain patients and asymptomatic subjects when targeting a natural head posture (NHP) and complex predetermined positions. Design: A case-control study. Setting: University-based musculoskeletal research clinic. Participants: Sixty-three volunteers divided into three groups of similar gender and age: Group 1 (n=21) an asymptomatic group; group 2 (n=20) insidious onset neck pain; group 3 (n=22) a history of whiplash injury. Intervention: Five randomly ordered tests designed to detect relocation accuracy of the head. Outcome measures: A 3-Space Fastrak system measured the mean absolute relocation error of three trials of each relocation test. Results: A significant difference was found between groups in one of the tests targeting the NHP (p=0.001). Post-hoc pairwise comparisons revealed a significant difference (pless than or equal to0.05) between the asymptomatic group and each symptomatic group. The difference between the symptomatic groups just failed to reach significance (p=0.07). None of the other four tests revealed significant differences. Conclusion: The test of targeting the NHP indicates that relocation inaccuracy exists in patients with neck pain with a trend to suggest that the deficit may be greater in whiplash patients. Tests employing unfamiliar postures or more complex movement were not successful in differentiating subject groups.