889 resultados para Ischemic stroke
Resumo:
Cardiac surgery involving ischemic arrest and extracorporeal circulation is often associated with alterations in vascular reactivity and permeability due to changes in the expression and activity of isoforms of nitric oxide synthase and cyclooxygenase. These inflammatory changes may manifest as systemic hypotension, coronary spasm or contraction, myocardial failure, and dysfunction of the lungs, gut, brain and other organs. In addition, endothelial dysfunction may increase the occurrence of late cardiac events such as graft thrombosis and myocardial infarction. These vascular changes may lead to increased mortality and morbidity and markedly lengthen the time of hospitalization and cost of cardiac surgery. Developing a better understanding of the vascular changes operating through nitric oxide synthase and cyclooxygenase may improve the care and help decrease the cost of cardiovascular operations.
Resumo:
The data reviewed here suggest the possibility that a global reduction of blood supply to the whole brain or solely to the infratentorial structures down to the range of ischemic penumbra for several hours or a few days may lead to misdiagnosis of irreversible brain or brain stem damage in a subset of deeply comatose patients with cephalic areflexia. The following proposals are advanced: 1) the lack of any set of clinically detectable brain functions does not provide a safe diagnosis of brain or brain stem death; 2) apnea testing may induce irreversible brain damage and should be abandoned; 3) moderate hypothermia, antipyresis, prevention of arterial hypotension, and occasionally intra-arterial thrombolysis may contribute to good recovery of a possibly large subset of cases of brain injury currently regarded as irreversible; 4) confirmatory tests for brain death should not replace or delay the administration of potentially effective therapeutic measures; 5) in order to validate confirmatory tests, further research is needed to relate their results to specific levels of blood supply to the brain. The current criteria for the diagnosis of brain death should be revised.
Resumo:
We evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) on post-ischemic function in isolated hearts from adult male Wistar rats perfused according to the Langendorff technique. Local ischemia was induced by coronary ligation for 15 min. After ischemia, hearts were reperfused for 30 min. Addition of angiotensin II (Ang II) (0.20 nM, N = 10) or Ang-(1-7) (0.22 nM, N = 10) to the Krebs-Ringer perfusion solution (KRS) before the occlusion did not modify diastolic or systolic tension, heart rate or coronary flow (basal values for Ang-(1-7)-treated hearts: 0.72 ± 0.08 g, 10.50 ± 0.66 g, 216 ± 9 bpm, 5.78 ± 0.60 ml/min, respectively). During the period of occlusion, the coronary flow, heart rate and systolic tension decreased (values for Ang-(1-7)-treated hearts: 2.83 ± 0.24 ml/min, 186 ± 7 bpm, 6.95 ± 0.45 g, respectively). During reperfusion a further decrease in systolic tension was observed in control (4.95 ± 0.60 g) and Ang II-treated hearts (4.35 ± 0.62 g). However, in isolated hearts perfused with KRS containing Ang-(1-7) the further reduction of systolic tension during the reperfusion period was prevented (7.37 ± 0.68 g). The effect of Ang-(1-7) on the systolic tension was blocked by the selective Ang-(1-7) antagonist A-779 (2 nM, N = 9), by the bradykinin B2 antagonist HOE 140 (100 nM, N = 10), and by indomethacin pretreatment (5 mg/kg, ip, N = 8). Pretreatment with L-NAME (30 mg/kg, ip, N = 8) did not change the effect of Ang-(1-7) on systolic tension (6.85 ± 0.61 g). These results show that Ang-(1-7) at low concentration (0.22 nM) improves myocardial function (systolic tension) in ischemia/reperfusion through a receptor-mediated mechanism involving release of bradykinin and prostaglandins.
Resumo:
Metabolic studies using the in vitro non-recirculating blood-perfused isolated heart model require large volumes of blood. The present study was designed to determine whether heterologous pig blood collected from a slaughterhouse can be used as perfusate for isolated pig hearts perfused under aerobic and constant reduced flow conditions. Eight isolated working pig hearts perfused for 90 min at a constant flow of 1.5 ml g-1 min-1 with non-recirculated blood diluted with Krebs-Henseleit bicarbonate buffer at a hematocrit of 23% were compared to eight hearts subjected to the same protocol but perfused only with Krebs-Henseleit bicarbonate buffer solution. Hearts were paced at 100 bpm and subjected to aerobic perfusion at 38ºC. Hearts were weighed before perfusion and at the end of the experiment and the results are reported as percent weight gain (mean ± SD). Comparisons between groups were performed by the Student t-test (P<0.05). After 90 min of perfusion with modified Krebs-Henseleit, perfused hearts presented a larger weight gain than blood-perfused hearts (39.34 ± 9.27 vs 23.13 ± 5.42%, P = 0.003). Left ventricular end-diastolic pressure was higher in the modified Krebs-Henseleit-perfused group than in the blood group (2.8 ± 0.4 vs 2.3 ± 0.3 mmHg, respectively, P = 0.01). We conclude that heterologous blood perfusion, by preserving a more physiological myocardial water content, is a better perfusion fluid than modified Krebs-Henseleit solution for quantitative studies of myocardial metabolism and heart function under ischemic conditions.
Resumo:
A gravimetric method was evaluated as a simple, sensitive, reproducible, low-cost alternative to quantify the extent of brain infarct after occlusion of the medial cerebral artery in rats. In ether-anesthetized rats, the left medial cerebral artery was occluded for 1, 1.5 or 2 h by inserting a 4-0 nylon monofilament suture into the internal carotid artery. Twenty-four hours later, the brains were processed for histochemical triphenyltetrazolium chloride (TTC) staining and quantitation of the schemic infarct. In each TTC-stained brain section, the ischemic tissue was dissected with a scalpel and fixed in 10% formalin at 0ºC until its total mass could be estimated. The mass (mg) of the ischemic tissue was weighed on an analytical balance and compared to its volume (mm³), estimated either by plethysmometry using platinum electrodes or by computer-assisted image analysis. Infarct size as measured by the weighing method (mg), and reported as a percent (%) of the affected (left) hemisphere, correlated closely with volume (mm³, also reported as %) estimated by computerized image analysis (r = 0.88; P < 0.001; N = 10) or by plethysmography (r = 0.97-0.98; P < 0.0001; N = 41). This degree of correlation was maintained between different experimenters. The method was also sensitive for detecting the effect of different ischemia durations on infarct size (P < 0.005; N = 23), and the effect of drug treatments in reducing the extent of brain damage (P < 0.005; N = 24). The data suggest that, in addition to being simple and low cost, the weighing method is a reliable alternative for quantifying brain infarct in animal models of stroke.
Resumo:
The objective of the present study was to determine the relationship between nitric oxide synthases (NOS) and heart failure in cardiac tissue from patients with and without cardiac decompensation. Right atrial tissue was excised from patients with coronary artery disease (CAD) and left ventricular ejection fraction (LVEF) <35% (N = 10), and from patients with CAD and LVEF >60% (N = 10) during cardiac surgery. NOS activity was measured by the conversion of L-[H³]-arginine to L-[H³]-citrulline. Gene expression was quantified by the competitive reverse transcription-polymerase chain reaction. Both endothelial NOS (eNOS) activity and expression were significantly reduced in failing hearts compared to non-failing hearts: 0.36 ± 0.18 vs 1.51 ± 0.31 pmol mg-1 min-1 (P < 0.0001) and 0.37 ± 0.08 vs 0.78 ± 0.09 relative cDNA absorbance at 320 nm (P < 0.0001), respectively. In contrast, inducible NOS (iNOS) activity and expression were significantly higher in failing hearts than in non-failing hearts: 4.00 ± 0.90 vs 1.54 ± 0.65 pmol mg-1 min-1 (P < 0.0001) and 2.19 ± 0.27 vs 1.43 ± 0.13 cDNA absorbance at 320 nm (P < 0.0001), respectively. We conclude that heart failure down-regulates both eNOS activity and expression in cardiac tissue from patients with LVEF <35%. In contrast, iNOS activity and expression are increased in failing hearts and may represent an alternative mechanism for nitric oxide production in heart failure due to ischemic disease.
Resumo:
Ischemic pain occurs when there is insufficient blood flow for the metabolic needs of an organ. The pain of a heart attack is the prototypical example. Multiple compounds released from ischemic muscle likely contribute to this pain by acting on sensory neurons that innervate muscle. One such compound is lactic acid. Here, we show that ASIC3 (acid-sensing ion channel #3) has the appropriate expression pattern and physical properties to be the detector of this lactic acid. In rats, it is expressed only in sensory neurons and then only on a minority (~40%) of these. Nevertheless, it is expressed at extremely high levels on virtually all dorsal root ganglion sensory neurons that innervate the heart. It is extraordinarily sensitive to protons (Hill slope 4, half-activating pH 6.7), allowing it to readily respond to the small changes in extracellular pH (from 7.4 to 7.0) that occur during muscle ischemia. Moreover, both extracellular lactate and extracellular ATP increase the sensitivity of ASIC3 to protons. This final property makes ASIC3 a "coincidence detector" of three molecules that appear during ischemia, thereby allowing it to better detect acidosis caused by ischemia than other forms of systemic acidosis such as hypercapnia.
Resumo:
We tested the hypothesis that the inability to increase cardiac output during exercise would explain the decreased rate of oxygen uptake (VO2) in recent onset, ischemia-induced heart failure rats. Nine normal control rats and 6 rats with ischemic heart failure were studied. Myocardial infarction was induced by coronary ligation. VO2 was measured during a ramp protocol test on a treadmill using a metabolic mask. Cardiac output was measured with a flow probe placed around the ascending aorta. Left ventricular end-diastolic pressure was higher in ischemic heart failure rats compared with normal control rats (17 ± 0.4 vs 8 ± 0.8 mmHg, P = 0.0001). Resting cardiac index (CI) tended to be lower in ischemic heart failure rats (P = 0.07). Resting heart rate (HR) and stroke volume index (SVI) did not differ significantly between ischemic heart failure rats and normal control rats. Peak VO2 was lower in ischemic heart failure rats (73.72 ± 7.37 vs 109.02 ± 27.87 mL min-1 kg-1, P = 0.005). The VO2 and CI responses during exercise were significantly lower in ischemic heart failure rats than in normal control rats. The temporal response of SVI, but not of HR, was significantly lower in ischemic heart failure rats than in normal control rats. Peak CI, HR, and SVI were lower in ischemic heart failure rats. The reduction in VO2 response during incremental exercise in an ischemic model of heart failure is due to the decreased cardiac output response, largely caused by depressed stroke volume kinetics.
Resumo:
Novel word learning has been rarely studied in people with aphasia (PWA), although it can provide a relatively pure measure of their learning potential, and thereby contribute to the development of effective aphasia treatment methods. The main aim of the present thesis was to explore the capacity of PWA for associative learning of word–referent pairings and cognitive-linguistic factors related to it. More specifically, the thesis examined learning and long-term maintenance of the learned pairings, the role of lexical-semantic abilities in learning as well as acquisition of phonological versus semantic information in associative novel word learning. Furthermore, the effect of modality on associative novel word learning and the neural underpinnings of successful learning were explored. The learning experiments utilized the Ancient Farming Equipment (AFE) paradigm that employs drawings of unfamiliar referents and their unfamiliar names. Case studies of Finnishand English-speaking people with chronic aphasia (n = 6) were conducted in the investigation. The learning results of PWA were compared to those of healthy control participants, and active production of the novel words and their semantic definitions was used as learning outcome measures. PWA learned novel word–novel referent pairings, but the variation between individuals was very wide, from more modest outcomes (Studies I–II) up to levels on a par with healthy individuals (Studies III–IV). In incidental learning of semantic definitions, none of the PWA reached the performance level of the healthy control participants. Some PWA maintained part of the learning outcomes up to months post-training, and one individual showed full maintenance of the novel words at six months post-training (Study IV). Intact lexical-semantic processing skills promoted learning in PWA (Studies I–II) but poor phonological short-term memory capacities did not rule out novel word learning. In two PWA with successful learning and long-term maintenance of novel word–novel referent pairings, learning relied on orthographic input while auditory input led to significantly inferior learning outcomes (Studies III–IV). In one of these individuals, this previously undetected modalityspecific learning ability was successfully translated into training with familiar but inaccessible everyday words (Study IV). Functional magnetic resonance imaging revealed that this individual had a disconnected dorsal speech processing pathway in the left hemisphere, but a right-hemispheric neural network mediated successful novel word learning via reading. Finally, the results of Study III suggested that the cognitive-linguistic profile may not always predict the optimal learning channel for an individual with aphasia. Small-scale learning probes seem therefore useful in revealing functional learning channels in post-stroke aphasia.
Resumo:
Ethnicity has been shown to be associated with micro- and macrovascular complications of diabetes in European and North American populations. We analyzed the contribution of ethnicity to the prevalence of micro- and macrovascular complications in Brazilian subjects with type 2 diabetes attending the national public health system. Data from 1810 subjects with type 2 diabetes (1512 whites and 298 blacks) were analyzed cross-sectionally. The rates of ischemic heart disease, peripheral vascular disease, stroke, distal sensory neuropathy, and diabetic retinopathy were assessed according to self-reported ethnicity using multiple logistic regression models. Compared to whites, black subjects [odds ratio = 1.72 (95%CI = 1.14-2.6)] were more likely to have ischemic heart disease when data were adjusted for age, sex, fasting plasma glucose, HDL cholesterol, hypertension, smoking habit, and serum creatinine. Blacks were also more likely to have end-stage renal disease [3.2 (1.7-6.0)] and proliferative diabetic retinopathy [1.9 (1.1-3.2)] compared to whites when data were adjusted for age, sex, fasting plasma glucose, HDL cholesterol, hypertension, and smoking habit. The rates of peripheral vascular disease, stroke and distal sensory neuropathy did not differ between groups. The higher rates of ischemic heart disease, end-stage renal disease and proliferative diabetic retinopathy in black rather than in white Brazilians were not explained by differences in conventional risk factors. Identifying which aspects of ethnicity confer a higher risk for these complications in black patients is crucial in order to understand why such differences exist and to develop more effective strategies to reduce the onset and progression of these complications.
Resumo:
Chronic neurodegenerative processes have been identified in the rat forebrain after prolonged survival following hyperthermia (HT) initiated a few hours after transient global ischemia. Since transient global ischemia and ischemic penumbra share pathophysiological similarities, this study addressed the effects of HT induced after recirculation of focal brain ischemia on infarct size during long survival times. Adult male Wistar rats underwent intra-luminal occlusion of the left middle cerebral artery for 60 min followed by HT (39.0-39.5°C) or normothermia. Control procedures included none and sham surgery with and without HT, and middle cerebral artery occlusion alone. Part I: 6-h HT induced at recirculation. Part II: 2-h HT induced at 2-, 6-, or 24-h recirculation. Part III: 2-h HT initiated at recirculation or 6-h HT initiated at 2-, 6- or 24-h recirculation. Survival periods were 7 days, 2 or 6 months. The effects of post-ischemic HT on cortex and striatum were evaluated histopathologically by measuring the area of remaining tissue in the infarcted hemisphere at -0.30 mm from bregma. Six-hour HT initiated from 6-h recirculation caused a significant decrease in the remaining cortical tissue between 7-day (N = 8) and 2-month (N = 8) survivals (98.46 ± 1.14 to 73.62 ± 8.99%, respectively). When induced from 24-h recirculation, 6-h HT caused a significant reduction of the remaining cortical tissue between 2- (N = 8) and 6-month (N = 9) survivals (94.97 ± 5.02 vs 63.26 ± 11.97%, respectively). These data indicate that post-ischemic HT triggers chronic neurodegenerative processes in ischemic penumbra, suggesting that similar fever-triggered effects may annul the benefit of early recirculation in stroke patients over the long-term.
Resumo:
Ischemic preconditioning (IPC), a strategy used to attenuate ischemia-reperfusion injury, consists of brief ischemic periods, each followed by reperfusion, prior to a sustained ischemic insult. The purpose of the present study was to evaluate the local and systemic anti-inflammatory effects of hind limb IPC in male Wistar rat (200-250 g) models of acute inflammation. IPC was induced with right hind limb ischemia for 10 min by placing an elastic rubber band tourniquet on the proximal part of the limb followed by 30 min of reperfusion. Groups (N = 6-8) were submitted to right or left paw edema (PE) with carrageenan (100 µg) or Dextran (200 µg), hemorrhagic cystitis with ifosfamide (200 mg/kg, ip) or gastric injury (GI) with indomethacin (20 mg/kg, vo). Controls received similar treatments, without IPC (Sham-IPC). PE is reported as variation of paw volume (mL), vesical edema (VE) as vesical wet weight (mg), vascular permeability (VP) with Evans blue extravasation (µg), GI with the gastric lesion index (GLI; total length of all erosions, mm), and neutrophil migration (NM) from myeloperoxidase activity. The statistical significance (P < 0.05) was determined by ANOVA, followed by the Tukey test. Carrageenan or Dextran-induced PE and VP in either paw were reduced by IPC (42-58.7%). IPC inhibited VE (38.8%) and VP (54%) in ifosfamide-induced hemorrhagic cystitis. GI and NM induced by indomethacin were inhibited by IPC (GLI: 90.3%; NM: 64%). This study shows for the first time that IPC produces local and systemic anti-inflammatory effects in models of acute inflammation other than ischemia-reperfusion injury.
Resumo:
After myocardial infarction (MI), activation of the immune system and inflammatory mechanisms, among others, can lead to ventricular remodeling and heart failure (HF). The interaction between these systemic alterations and corresponding changes in the heart has not been extensively examined in the setting of chronic ischemia. The main purpose of this study was to investigate alterations in cardiac gene and systemic cytokine profile in mice with post-ischemic HF. Plasma was tested for IgM and IgG anti-heart reactive repertoire and inflammatory cytokines. Heart samples were assayed for gene expression by analyzing hybridization to AECOM 32k mouse microarrays. Ischemic HF significantly increased the levels of total serum IgM (by 5.2-fold) and total IgG (by 3.6-fold) associated with a relatively high content of anti-heart specificity. A comparable increase was observed in the levels of circulating pro-inflammatory cytokines such as IL-1β (3.8X) and TNF-α (6.0X). IFN-γ was also increased by 3.1-fold in the MI group. However, IL-4 and IL-10 were not significantly different between the MI and sham-operated groups. Chemokines such as MCP-1 and IL-8 were 1.4- and 13-fold increased, respectively, in the plasma of infarcted mice. We identified 2079 well annotated unigenes that were significantly regulated by post-ischemic HF. Complement activation and immune response were among the most up-regulated processes. Interestingly, 21 of the 101 quantified unigenes involved in the inflammatory response were significantly up-regulated and none were down-regulated. These data indicate that post-ischemic heart remodeling is accompanied by immune-mediated mechanisms that act both systemically and locally.
Resumo:
The purpose of this study was to investigate the protective effects of ischemic post-conditioning on damage to the barrier function of the small intestine caused by limb ischemia-reperfusion injury. Male Wistar rats were randomly divided into 3 groups (N = 36 each): sham operated (group S), lower limb ischemia-reperfusion (group LIR), and post-conditioning (group PC). Each group was divided into subgroups (N = 6) according to reperfusion time: immediate (0 h; T1), 1 h (T2), 3 h (T3), 6 h (T4), 12 h (T5), and 24 h (T6). In the PC group, 3 cycles of reperfusion followed by ischemia (each lasting 30 s) were applied immediately. At all reperfusion times (T1-T6), diamine oxidase (DAO), superoxide dismutase (SOD), and myeloperoxidase (MPO) activity, malondialdehyde (MDA) intestinal tissue concentrations, plasma endotoxin concentrations, and serum DAO, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) concentrations were measured in sacrificed rats. Chiu’s pathology scores for small intestinal mucosa were determined under a light microscope and showed that damage to the small intestinal mucosa was lower in group PC than in group LIR. In group PC, tissue DAO and SOD concentrations at T2 to T6, and IL-10 concentrations at T2 to T5 were higher than in group LIR (P < 0.05); however, tissue MPO and MDA concentrations, and serum DAO and plasma endotoxin concentrations at T2 to T6, as well as TNF-α at T2 and T4 decreased significantly (P < 0.05). These results show that ischemic post-conditioning attenuated the permeability of the small intestines after limb ischemia-reperfusion injury. The protective mechanism of ischemic post-conditioning may be related to inhibition of oxygen free radicals and inflammatory cytokines that cause organ damage.
Resumo:
Abstract Coronary artery disease is the leading cause of death in the developed world and in developing countries. Acute mortality from acute myocardial infarction (MI) has decreased in the last decades. However, the incidence of heart failure (HF) in patients with healed infarcted areas is increasing. Therefore, HF prevention is a major challenge to the health system in order to reduce healthcare costs and to provide a better quality of life. Animal models of ischemia and infarction have been essential in providing precise information regarding cardiac remodeling. Several of these changes are maladaptive, and they progressively lead to ventricular dilatation and predispose to the development of arrhythmias, HF and death. These events depend on cell death due to necrosis and apoptosis and on activation of the inflammatory response soon after MI. Systemic and local neurohumoral activation has also been associated with maladaptive cardiac remodeling, predisposing to HF. In this review, we provide a timely description of the cardiovascular alterations that occur after MI at the cellular, neurohumoral and electrical level and discuss the repercussions of these alterations on electrical, mechanical and structural dysfunction of the heart. We also identify several areas where insufficient knowledge limits the adoption of better strategies to prevent HF development in chronically infarcted individuals.