998 resultados para Intra prediction
Resumo:
The SEARCH-RIO study prospectively investigated electrocardiogram (ECG)-derived variables in chronic Chagas disease (CCD) as predictors of cardiac death and new onset ventricular tachycardia (VT). Cardiac arrhythmia is a major cause of death in CCD, and electrical markers may play a significant role in risk stratification. One hundred clinically stable outpatients with CCD were enrolled in this study. They initially underwent a 12-lead resting ECG, signal-averaged ECG, and 24-h ambulatory ECG. Abnormal Q-waves, filtered QRS duration, intraventricular electrical transients (IVET), 24-h standard deviation of normal RR intervals (SDNN), and VT were assessed. Echocardiograms assessed left ventricular ejection fraction. Predictors of cardiac death and new onset VT were identified in a Cox proportional hazard model. During a mean follow-up of 95.3 months, 36 patients had adverse events: 22 new onset VT (mean±SD, 18.4±4‰/year) and 20 deaths (26.4±1.8‰/year). In multivariate analysis, only Q-wave (hazard ratio, HR=6.7; P<0.001), VT (HR=5.3; P<0.001), SDNN<100 ms (HR=4.0; P=0.006), and IVET+ (HR=3.0; P=0.04) were independent predictors of the composite endpoint of cardiac death and new onset VT. A prognostic score was developed by weighting points proportional to beta coefficients and summing-up: Q-wave=2; VT=2; SDNN<100 ms=1; IVET+=1. Receiver operating characteristic curve analysis optimized the cutoff value at >1. In 10,000 bootstraps, the C-statistic of this novel score was non-inferior to a previously validated (Rassi) score (0.89±0.03 and 0.80±0.05, respectively; test for non-inferiority: P<0.001). In CCD, surface ECG-derived variables are predictors of cardiac death and new onset VT.
Resumo:
Variantti B.
Resumo:
Variantti A.
Resumo:
This work describes a method to predict the solubility of essential oils in supercritical carbon dioxide. The method is based on the formulation proposed in 1979 by Asselineau, Bogdanic and Vidal. The Peng-Robinson and Soave-Redlich-Kwong cubic equations of state were used with the van der Waals mixing rules with two interaction parameters. Method validation was accomplished calculating orange essential oil solubility in pressurized carbon dioxide. The solubility of orange essential oil in carbon dioxide calculated at 308.15 K for pressures of 50 to 70 bar varied from 1.7± 0.1 to 3.6± 0.1 mg/g. For same the range of conditions, experimental solubility varied from 1.7± 0.1 to 3.6± 0.1 mg/g. Predicted values were not very sensitive to initial oil composition.
Resumo:
Solid mixtures for refreshment are already totally integrated to the Brazilian consumers' daily routine, because of their quick preparation method, yield and reasonable price - quite lower if compared to 'ready-to-drink' products or products for prompt consumption, what makes them economically more accessible to low-income populations. Within such a context, the aim of this work was to evaluate the physicochemical and mineral composition, as well as the hygroscopic behavior of four different brands of solid mixture for mango refreshment. The BET, GAB, Oswim and Henderson mathematical models were built through the adjustment of experimental data to the isotherms of adsorption. Results from the physiochemical evaluation showed that the solid mixtures for refreshments are considerable sources of ascorbic acid and reductor sugar; and regarding mineral compounds, they are significant sources of calcium, sodium and potassium. It was also verified that the solid mixtures for refreshments of the four studied brands are considered highly hygroscopic.
Resumo:
In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.
Resumo:
The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.
Resumo:
Very preterm birth is a risk for brain injury and abnormal neurodevelopment. While the incidence of cerebral palsy has decreased due to advances in perinatal and neonatal care, the rate of less severe neuromotor problems continues to be high in very prematurely born children. Neonatal brain imaging can aid in identifying children for closer follow-up and in providing parents information on developmental risks. This thesis aimed to study the predictive value of structural brain magnetic resonance imaging (MRI) at term age, serial neonatal cranial ultrasound (cUS), and structured neurological examinations during the longitudinal follow-up for the neurodevelopment of very preterm born children up to 11 years of age as a part of the PIPARI Study (The Development and Functioning of Very Low Birth Weight Infants from Infancy to School Age). A further aim was to describe the associations between regional brain volumes and long-term neuromotor profile. The prospective follow-up comprised of the assessment of neurosensory development at 2 years of corrected age, cognitive development at 5 years of chronological age, and neuromotor development at 11 years of age. Neonatal brain imaging and structured neurological examinations predicted neurodevelopment at all age-points. The combination of neurological examination and brain MRI or cUS improved the predictive value of neonatal brain imaging alone. Decreased brain volumes associated with neuromotor performance. At the age of 11 years, the majority of the very preterm born children had age-appropriate neuromotor development and after-school sporting activities. Long-term clinical follow-up is recommended at least for all very preterm infants with major brain pathologies.