976 resultados para Inside-Outside Algorithm
Resumo:
The MID-K, a new kind of multi-pipe string detection tool is introduced. This tool provides a means of evaluating the condition of in-place pipe string, such as tubing and casino. It is capable of discriminating the defects of the inside and outside, and estimating the thickness of tubing and casing. It is accomplished by means of a low frequency eddy current to detect flaws on the inner surface and a magnetic flux leakage to inspect the full thickness. The measurement principle, the technology and applications are presented in this paper.
Resumo:
Adhesion forces of Dipalmitoylphosphatidylcholine ( DPPC) membrane in the gel phase are investigated by molecular dynamics ( MD) simulation. In the simulations, individual DPPC molecules are pulled out of DPPC membranes with different rates and we get the maximum adhesion forces of DPPC membrane. We find that the maximum adhesion forces increase with pull rate, from about 400 to 700 pN when pull rates are from 0.001 to 0.03 nm/ps. We analyze the relationship between pull rate and adhesion forces of different origins using Brownian dynamics and notice that viscosity of solvent plays an important role in adhesion forces. Then we simulate the motion of a single DPPC molecule in solvent and it elucidates that the maximum drag force is almost linear with respect to the pull rate. We use Stokes' relation to describe the motion of a single DPPC molecule and deduce the effective length of a DPPC molecule. Conformational analyses indicate that the free energy variation of a DPPC molecule inside and outside of the DPPC membrane is an essential part of adhesion energy.
Resumo:
Executive Summary: A number of studies have shown that mobile, bottom-contact fishing gear (such as otter trawls) can alter seafloor habitats and associated biota. Considerably less is known about the recovery of these resources following such disturbances, though this information is critical for successful management. In part, this paucity of information can be attributed to the lack of access to adequate control sites – areas of the seafloor that are closed to fishing activity. Recent closures along the coast of central California provide an excellent opportunity to track the recovery of historically trawled areas and to compare recovery rates to adjacent areas that continue to be trawled. In June 2006 we initiated a multi-year study of the recovery of seafloor microhabitats and associated benthic fauna inside and outside two new Essential Fish Habitat (EFH) closures within the Cordell Bank and Gulf of the Farallones National Marine Sanctuaries. Study sites inside the EFH closure at Cordell Bank were located in historically active areas of fishing effort, which had not been trawled since 2003. Sites outside the EFH closure in the Gulf of Farallones were located in an area that continues to be actively trawled. All sites were located in unconsolidated sands at equivalent water depths. Video and still photographic data collected via a remotely operated vehicle (ROV) were used to quantify the abundance, richness, and diversity of microhabitats and epifaunal macro-invertebrates at recovering and actively trawled sites, while bottom grabs and conductivity/temperature/depth (CTD) casts were used to quantify infaunal diversity and to characterize local environmental conditions. Analysis of still photos found differences in common seafloor microhabitats between the recovering and actively trawled areas, while analysis of videographic data indicated that biogenic mound and biogenic depression microhabitats were significantly less abundant at trawled sites. Each of these features provides structure with which demersal fishes, across a wide range of size classes, have been observed to associate. Epifaunal macro-invertebrates were sparsely distributed and occurred in low numbers in both treatments. However, their total abundance was significantly different between treatments, which was attributable to lower densities at trawled sites. In addition, the dominant taxa were different between the two sites. Patchily-distributed buried brittle stars dominated the recovering site, and sea whips (Halipteris cf. willemoesi) were most numerous at the trawled site though they occurred in only five of ten transects. Numerical classification (cluster analysis) of the infaunal samples also revealed a clear difference between benthic assemblages in the recovering vs. trawled areas due to differences in the relative abundances of component species. There were no major differences in infaunal species richness, H′ diversity, or J′ evenness between recovering vs. trawled site groups. However, total infaunal abundance showed a significant difference attributable to much lower densities at trawled sites. This pattern was driven largely by the small oweniid polychaete Myriochele gracilis, which was the most abundant species in the overall study region though significantly less abundant at trawled sites. Other taxa that were significantly less abundant at trawled sites included the polychaete M. olgae and the polychaete family Terebellidae. In contrast, the thyasirid bivalve Axinopsida serricata and the polychaetes Spiophanes spp. (mostly S. duplex), Prionospio spp., and Scoloplos armiger all had significantly to near significantly higher abundances at trawled sites. As a result of such contrasting species patterns, there also was a significant difference in the overall dominance structure of infaunal assemblages between the two treatments. It is suggested that the observed biological patterns were the result of trawling impacts and varying levels of recovery due to the difference in trawling status between the two areas. The EFH closure was established in June 2006, within a month of when sampling was conducted for the present study, however, the stations within this closure area are at sites that actually have experienced little trawling since 2003, based on National Marine Fishery Service trawl records. Thus, the three-year period would be sufficient time for some post-trawling changes to have occurred. Other results from this study (e.g., similarly moderate numbers of infaunal species in both areas that are lower than values recorded elsewhere in comparable habitats along the California continental shelf) also indicate that recovery within the closure area is not yet complete. Additional sampling is needed to evaluate subsequent recovery trends and persistence of effects. Furthermore, to date, the study has been limited to unconsolidated substrates. Ultimately, the goal of this project is to characterize the recovery trajectories of a wide spectrum of seafloor habitats and communities and to link that recovery to the dynamics of exploited marine fishes. (PDF has 48 pages.)
Resumo:
From May 22 to June 4, 2006, NOAA scientists led a research cruise using the ROPOS Remotely Operated Vehicle (ROV) to conduct a series of dives at targeted sites in the Olympic Coast National Marine Sanctuary (OCNMS) with the goal of documenting deep coral and sponge communities. Dive sites were selected from areas for which OCNMS had side scan sonar data indicating the presence of hard or complex substrate. The team completed 11 dives in sanctuary waters ranging from six to 52 hours in length, at depths ranging from 100 to 650 meters. Transect surveys were completed at 15 pre-selected sites, with additional observations made at five other sites. The survey locations included sites both inside and outside the Essential Fish Habitat (EFH) Conservation Area, known as Olympic 2, established by the Pacific Fishery Management Council, enacted on June 12, 2006. Bottom trawling is prohibited in the Olympic 2 Conservation Area for nontribal fishermen. The Conservation Area covers 159.4 square nautical miles or about 15 percent of the sanctuary. Several species of corals and sponges were documented at 14 of the 15 sites surveyed, at sites both inside and outside the Conservation Area, including numerous gorgonians and the stony corals Lophelia pertusa and Desmophyllum dianthus, as well as small patches of the reef building sponge Farrea occa. The team also documented Lophelia sp. and Desmophyllum sp. coral rubble, dead gorgonians, lost fishing gear, and other anthropogenic debris, supporting concerns over potential risks of environmental disturbances to coral health. (PDF contains 60 pages.)
Resumo:
This project introduces an improvement of the vision capacity of the robot Robotino operating under ROS platform. A method for recognizing object class using binary features has been developed. The proposed method performs a binary classification of the descriptors of each training image to characterize the appearance of the object class. It presents the use of the binary descriptor based on the difference of gray intensity of the pixels in the image. It shows that binary features are suitable to represent object class in spite of the low resolution and the weak information concerning details of the object in the image. It also introduces the use of a boosting method (Adaboost) of feature selection al- lowing to eliminate redundancies and noise in order to improve the performance of the classifier. Finally, a kernel classifier SVM (Support Vector Machine) is trained with the available database and applied for predictions on new images. One possible future work is to establish a visual servo-control that is to say the reac- tion of the robot to the detection of the object.
Resumo:
[ES] La documentación contenida en este registro ha servido de base para el siguiente proyecto fin de carrera:
Resumo:
9 p.
Resumo:
Background: Primary distal renal tubular acidosis (dRTA) caused by mutations in the genes that codify for the H+ -ATPase pump subunits is a heterogeneous disease with a poor phenotype-genotype correlation. Up to now, large cohorts of dRTA Tunisian patients have not been analyzed, and molecular defects may differ from those described in other ethnicities. We aim to identify molecular defects present in the ATP6V1B1, ATP6V0A4 and SLC4A1 genes in a Tunisian cohort, according to the following algorithm: first, ATP6V1B1 gene analysis in dRTA patients with sensorineural hearing loss (SNHL) or unknown hearing status. Afterwards, ATP6V0A4 gene study in dRTA patients with normal hearing, and in those without any structural mutation in the ATP6V1B1 gene despite presenting SNHL. Finally, analysis of the SLC4A1 gene in those patients with a negative result for the previous studies. Methods: 25 children (19 boys) with dRTA from 20 families of Tunisian origin were studied. DNAs were extracted by the standard phenol/chloroform method. Molecular analysis was performed by PCR amplification and direct sequencing. Results: In the index cases, ATP6V1B1 gene screening resulted in a mutation detection rate of 81.25%, which increased up to 95% after ATP6V0A4 gene analysis. Three ATP6V1B1 mutations were observed: one frameshift mutation (c.1155dupC; p.Ile386fs), in exon 12; a G to C single nucleotide substitution, on the acceptor splicing site (c.175-1G > C; p.?) in intron 2, and one novel missense mutation (c. 1102G > A; p. Glu368Lys), in exon 11. We also report four mutations in the ATP6V0A4 gene: one single nucleotide deletion in exon 13 (c.1221delG; p. Met408Cysfs* 10); the nonsense c.16C > T; p.Arg6*, in exon 3; and the missense changes c.1739 T > C; p.Met580Thr, in exon 17 and c.2035G > T; p.Asp679Tyr, in exon 19. Conclusion: Molecular diagnosis of ATP6V1B1 and ATP6V0A4 genes was performed in a large Tunisian cohort with dRTA. We identified three different ATP6V1B1 and four different ATP6V0A4 mutations in 25 Tunisian children. One of them, c.1102G > A; p.Glu368Lys in the ATP6V1B1 gene, had not previously been described. Among deaf since childhood patients, 75% had the ATP6V1B1 gene c. 1155dupC mutation in homozygosis. Based on the results, we propose a new diagnostic strategy to facilitate the genetic testing in North Africans with dRTA and SNHL.
Resumo:
After nearly 15 years of research effort, High Temperature Superconductors (HTS) are finding a wide range of practical applications. A clear understanding of the factors controlling the current carrying capacity of these materials is a prerequisite to their successful technological development. The critical current density (Jc) in HTS is directly dependent on the structure and pinning of the Flux Line Lattice (FLL) in these materials. This thesis presents an investigation of the Jc anisotropy in HTS. The use of thin films grown on off c-axis (vicinal) substrates allowed the effect of current directions outside the cuprate planes to be studied. With this experimental geometry Berghuis, et al. (Phys. Rev. Lett. 79, 12, pg. 2332) observed a striking flux channelling effect in vicinal YBa2Cu3O7-δ (YBCO) films. By confirming, and extending, this observation, it is demonstrated that this is an intrinsic effect. The results obtained, appear to fit well with the predictions of a field angle dependent cross-over from a three dimensional rectilinear FLL to a kinked lattice of strings and pancakes. The pinning force density for movement of strings inside the cuprate planes is considerably less than that on vortex pancake elements. When the FLL is entirely string-like this reduced pinning leads to the observed channelling minima. It is observed that anti-phase boundaries enhance the Jc in vicinal YBCO films by strongly pinning vortex strings. The effect on the FLL structure cross-over of increasing anisotropy has been elucidated using de-oxygenated vicinal YBCO films. Intriguingly, the counter intuitive prediction that the range of applied field angle for which the kinked lattice is fully developed reduces with increasing anisotropy, appears to be confirmed. Although vortex channelling cannot be observed in c-axis YBCO films, the pinning force density for vortex string channelling has been extracted by observing string dragging. By studying the effect of rotating the applied field at a constant angle to the cuprate planes, it is possible to observe the cross-over into the string pancake regime in c-axis films. In the 3D region, the observed behaviour is well explained by the anisotropic Ginzburg-Landau model. Measurements were also made on thin films of the much more anisotropic Bi 2Sr2CaCu2O8+x material, grown on vicinal substrates. The absence of any flux channelling effect and clear adherence to the expected Kes-Law behaviour in the observed Jc characteristics does not provide evidence for the existence of the predicted ‘crossing lattice’ in Bi 2Sr2CaCu2O8+x .
Resumo:
The spring session of ACFM gave advice for a number of stocks in the North Atlantic, North Sea and Baltic. The present assessment of the situation is given here for stocks of higher importance for the German fishery. These are: Blue Whiting: the stock is still relatively high, this, however, will not last very long, due to too intense fishing. Cod in Kattegat: stock is outside safe biological limits. No immediate recovery in sight. Cod in 22–24 (Baltic): stock is inside save biological limits. F, however, is above the recommendation of the IBSFC. Greenland Halibut: state of the stock not quite clear. The present fishing intensity seems to be sustainable. Herring (Atlanto- scandian, Norwegian spring spawner): stock is within safe biological limits, weak recruitment of the recent years will lead to a reduction of biomass. Herring: for Baltic spring spawner in 22–24 and IIIa still no increasing tendency detectable. North Sea Herring: further increasing tendency, with 900 000 t over B lim, good recruitment. Herring in VIa: stable. Redfish: generally decreasing tendency observed, a reduction of the fishery is recommended. Signs of recovery, however, visible for some units
Resumo:
The spring session of ACFM gave advice for a number of stocks in the North Atlantic, North Sea and Baltic. The situation is given here for stocks of higher importance for the German fishery. These are: Blue Whiting: A short term upwards trend is observed, which, however, will not last very long, due to too intense fishing. Cod in Kattegat: Stock is outside safe biological limits. No immediate recovery in sight. Cod in Sub. Div. 22– 24 (Baltic): Stock is outside safe biological limits. Due to weak recruitment not immediate recovery in prospect. Greenland Halibut: Stock outside safe biological limits and still in downward trend. Herring (atlanto-scandian, Norw. spring spawner): Stock inside safe biological limits, weak recruitment of the past 5 years will, however, lead to a reduction of the biomass. Redfish: Generally decreasing tendency observed, a reduction of the fishery is recommended.
Resumo:
To simulate fracture behaviors in concrete more realistically, a theoretical analysis on the potential question in the quasi-static method is presented, then a novel algorithm is proposed which takes into account the inertia effect due to unstable crack propagation and meanwhile requests much lower computational efforts than purely dynamic method. The inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, results may become questionable if a fracture process including unstable cracking is simulated by the quasi-static procedure excluding completely inertia effects. However, it requires much higher computational effort to simulate experiments with not very high loading rates by the dynamic method. In this investigation which can be taken as a natural continuation, the potential question of quasi-static method is analyzed based on the dynamic equations of motion. One solution to this question is the new algorithm mentioned above. Numerical examples are provided by the generalized beam (GB) lattice model to show both fracture processes under different loading rates and capability of the new algorithm.