874 resultados para Information retrieval - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Web document cluster analysis plays an important role in information retrieval by organizing large amounts of documents into a small number of meaningful clusters. Traditional web document clustering is based on the Vector Space Model (VSM), which takes into account only two-level (document and term) knowledge granularity but ignores the bridging paragraph granularity. However, this two-level granularity may lead to unsatisfactory clustering results with “false correlation”. In order to deal with the problem, a Hierarchical Representation Model with Multi-granularity (HRMM), which consists of five-layer representation of data and a twophase clustering process is proposed based on granular computing and article structure theory. To deal with the zero-valued similarity problemresulted from the sparse term-paragraphmatrix, an ontology based strategy and a tolerance-rough-set based strategy are introduced into HRMM. By using granular computing, structural knowledge hidden in documents can be more efficiently and effectively captured in HRMM and thus web document clusters with higher quality can be generated. Extensive experiments show that HRMM, HRMM with tolerancerough-set strategy, and HRMM with ontology all outperform VSM and a representative non VSM-based algorithm, WFP, significantly in terms of the F-Score.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The practice of evidence-based medicine involves consulting documents from repositories such as Scopus, PubMed, or the Cochrane Library. The most common approach for presenting retrieved documents is in the form of a list, with the assumption that the higher a document is on a list, the more relevant it is. Despite this list-based presentation, it is seldom studied how physicians perceive the importance of the order of documents presented in a list. This paper describes an empirical study that elicited and modeled physicians' preferences with regard to list-based results. Preferences were analyzed using a GRIP method that relies on pairwise comparisons of selected subsets of possible rank-ordered lists composed of 3 documents. The results allow us to draw conclusions regarding physicians' attitudes towards the importance of having documents ranked correctly on a result list, versus the importance of retrieving relevant but misplaced documents. Our findings should help developers of clinical information retrieval applications when deciding how retrieved documents should be presented and how performance of the application should be assessed. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Term dependence is a natural consequence of language use. Its successful representation has been a long standing goal for Information Retrieval research. We present a methodology for the construction of a concept hierarchy that takes into account the three basic dimensions of term dependence. We also introduce a document evaluation function that allows the use of the concept hierarchy as a user profile for Information Filtering. Initial experimental results indicate that this is a promising approach for incorporating term dependence in the way documents are filtered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Timeline generation is an important research task which can help users to have a quick understanding of the overall evolution of any given topic. It thus attracts much attention from research communities in recent years. Nevertheless, existing work on timeline generation often ignores an important factor, the attention attracted to topics of interest (hereafter termed "social attention"). Without taking into consideration social attention, the generated timelines may not reflect users' collective interests. In this paper, we study how to incorporate social attention in the generation of timeline summaries. In particular, for a given topic, we capture social attention by learning users' collective interests in the form of word distributions from Twitter, which are subsequently incorporated into a unified framework for timeline summary generation. We construct four evaluation sets over six diverse topics. We demonstrate that our proposed approach is able to generate both informative and interesting timelines. Our work sheds light on the feasibility of incorporating social attention into traditional text mining tasks. Copyright © 2013 ACM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two studies aiming to identify the nature and extent of problems that people have when completing theory of planned behaviour (TPB) questionnaires, using a cognitive interviewing approach are reported. Both studies required participants to 'think aloud' as they completed TPB questionnaires about: (a) increasing physical activity (six general public participants); and (b) binge drinking (13 students). Most people had no identifiable problems with the majority of questions. However, there were problems common to both studies, relating to information retrieval and to participants answering different questions from those intended by researchers. Questions about normative influence were particularly problematic. The standard procedure for developing TPB questionnaires may systematically produce problematic questions. Suggestions are made for improving this procedure. Copyright © 2007 SAGE Publications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an adaptive method using genetic algorithm to modify user’s queries, based on relevance judgments. This algorithm was adapted for the three well-known documents collections (CISI, NLP and CACM). The method is shown to be applicable to large text collections, where more relevant documents are presented to users in the genetic modification. The algorithm shows the effects of applying GA to improve the effectiveness of queries in IR systems. Further studies are planned to adjust the system parameters to improve its effectiveness. The goal is to retrieve most relevant documents with less number of non-relevant documents with respect to user's query in information retrieval system using genetic algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we study some of the characteristics of the art painting image color semantics. We analyze the color features of differ- ent artists and art movements. The analysis includes exploration of hue, saturation and luminance. We also use quartile’s analysis to obtain the dis- tribution of the dispersion of defined groups of paintings and measure the degree of purity for these groups. A special software system “Art Paint- ing Image Color Semantics” (APICSS) for image analysis and retrieval was created. The obtained result can be used for automatic classification of art paintings in image retrieval systems, where the indexing is based on color characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, learning word vector representations has attracted much interest in Natural Language Processing. Word representations or embeddings learned using unsupervised methods help addressing the problem of traditional bag-of-word approaches which fail to capture contextual semantics. In this paper we go beyond the vector representations at the word level and propose a novel framework that learns higher-level feature representations of n-grams, phrases and sentences using a deep neural network built from stacked Convolutional Restricted Boltzmann Machines (CRBMs). These representations have been shown to map syntactically and semantically related n-grams to closeby locations in the hidden feature space. We have experimented to additionally incorporate these higher-level features into supervised classifier training for two sentiment analysis tasks: subjectivity classification and sentiment classification. Our results have demonstrated the success of our proposed framework with 4% improvement in accuracy observed for subjectivity classification and improved the results achieved for sentiment classification over models trained without our higher level features.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present algorithms which work on pairs of 0,1- matrices which multiply again a matrix of zero and one entries. When applied over a pair, the algorithms change the number of non-zero entries present in the matrices, meanwhile their product remains unchanged. We establish the conditions under which the number of 1s decreases. We recursively define as well pairs of matrices which product is a specific matrix and such that by applying on them these algorithms, we minimize the total number of non-zero entries present in both matrices. These matrices may be interpreted as solutions for a well known information retrieval problem, and in this case the number of 1 entries represent the complexity of the retrieve and information update operations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Search engines sometimes apply the search on the full text of documents or web-pages; but sometimes they can apply the search on selected parts of the documents only, e.g. their titles. Full-text search may consume a lot of computing resources and time. It may be possible to save resources by applying the search on the titles of documents only, assuming that a title of a document provides a concise representation of its content. We tested this assumption using Google search engine. We ran search queries that have been defined by users, distinguishing between two types of queries/users: queries of users who are familiar with the area of the search, and queries of users who are not familiar with the area of the search. We found that searches which use titles provide similar and sometimes even (slightly) better results compared to searches which use the full-text. These results hold for both types of queries/users. Moreover, we found an advantage in title-search when searching in unfamiliar areas because the general terms used in queries in unfamiliar areas match better with general terms which tend to be used in document titles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the context of Software Reuse providing techniques to support source code retrieval has been widely experimented. However, much effort is required in order to find how to match classical Information Retrieval and source code characteristics and implicit information. Introducing linguistic theories in the software development process, in terms of documentation standardization may produce significant benefits when applying Information Retrieval techniques. The goal of our research is to provide a tool to improve source code search and retrieval In order to achieve this goal we apply some linguistic rules to the development process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present an innovative topic segmentation system based on a new informative similarity measure that takes into account word co-occurrence in order to avoid the accessibility to existing linguistic resources such as electronic dictionaries or lexico-semantic databases such as thesauri or ontology. Topic segmentation is the task of breaking documents into topically coherent multi-paragraph subparts. Topic segmentation has extensively been used in information retrieval and text summarization. In particular, our architecture proposes a language-independent topic segmentation system that solves three main problems evidenced by previous research: systems based uniquely on lexical repetition that show reliability problems, systems based on lexical cohesion using existing linguistic resources that are usually available only for dominating languages and as a consequence do not apply to less favored languages and finally systems that need previously existing harvesting training data. For that purpose, we only use statistics on words and sequences of words based on a set of texts. This solution provides a flexible solution that may narrow the gap between dominating languages and less favored languages thus allowing equivalent access to information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since multimedia data, such as images and videos, are way more expressive and informative than ordinary text-based data, people find it more attractive to communicate and express with them. Additionally, with the rising popularity of social networking tools such as Facebook and Twitter, multimedia information retrieval can no longer be considered a solitary task. Rather, people constantly collaborate with one another while searching and retrieving information. But the very cause of the popularity of multimedia data, the huge and different types of information a single data object can carry, makes their management a challenging task. Multimedia data is commonly represented as multidimensional feature vectors and carry high-level semantic information. These two characteristics make them very different from traditional alpha-numeric data. Thus, to try to manage them with frameworks and rationales designed for primitive alpha-numeric data, will be inefficient. An index structure is the backbone of any database management system. It has been seen that index structures present in existing relational database management frameworks cannot handle multimedia data effectively. Thus, in this dissertation, a generalized multidimensional index structure is proposed which accommodates the atypical multidimensional representation and the semantic information carried by different multimedia data seamlessly from within one single framework. Additionally, the dissertation investigates the evolving relationships among multimedia data in a collaborative environment and how such information can help to customize the design of the proposed index structure, when it is used to manage multimedia data in a shared environment. Extensive experiments were conducted to present the usability and better performance of the proposed framework over current state-of-art approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the explosive growth of the volume and complexity of document data (e.g., news, blogs, web pages), it has become a necessity to semantically understand documents and deliver meaningful information to users. Areas dealing with these problems are crossing data mining, information retrieval, and machine learning. For example, document clustering and summarization are two fundamental techniques for understanding document data and have attracted much attention in recent years. Given a collection of documents, document clustering aims to partition them into different groups to provide efficient document browsing and navigation mechanisms. One unrevealed area in document clustering is that how to generate meaningful interpretation for the each document cluster resulted from the clustering process. Document summarization is another effective technique for document understanding, which generates a summary by selecting sentences that deliver the major or topic-relevant information in the original documents. How to improve the automatic summarization performance and apply it to newly emerging problems are two valuable research directions. To assist people to capture the semantics of documents effectively and efficiently, the dissertation focuses on developing effective data mining and machine learning algorithms and systems for (1) integrating document clustering and summarization to obtain meaningful document clusters with summarized interpretation, (2) improving document summarization performance and building document understanding systems to solve real-world applications, and (3) summarizing the differences and evolution of multiple document sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Everglades Online Thesaurus is a structured vocabulary of concepts and terms relating to the south Florida environment. Designed as an information management tool for both researchers and metadata creators, the Thesaurus is intended to improve information retrieval across the many disparate information systems, databases, and web sites that provide Everglades-related information. The vocabulary provided by the Everglades Online Thesaurus expresses each relevant concept using a single ‘preferred term’, whereas in natural language many terms may exist to express that same concept. In this way, the Thesaurus offers the possibility of standardizing the terminology used to describe Everglades-related information — an important factor in predictable and successful resource discovery.