918 resultados para Information Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La sequía es un fenómeno natural que se origina por el descenso de las precipitaciones con respecto a una media, y que resulta en la disponibilidad insuficiente de agua para alguna actividad. La creciente presión que se ha venido ejerciendo sobre los recursos hídricos ha hecho que los impactos de la sequía se hayan visto agravados a la vez que ha desencadenado situaciones de escasez de agua en muchas partes del planeta. Los países con clima mediterráneo son especialmente vulnerables a las sequías, y, su crecimiento económico dependiente del agua da lugar a impactos importantes. Para reducir los impactos de la sequía es necesaria una reducción de la vulnerabilidad a las sequías que viene dada por una gestión más eficiente y por una mejor preparación. Para ello es muy importante disponer de información acerca de los impactos y el alcance de este fenómeno natural. Esta investigación trata de abarcar el tema de los impactos de las sequías, de manera que plantea todos los tipos de impactos que pueden darse y además compara sus efectos en dos países (España y Chile). Para ello se proponen modelos de atribución de impactos que sean capaces de medir las pérdidas económicas causadas por la falta de agua. Los modelos propuestos tienen una base econométrica en la que se incluyen variables clave a la hora de evaluar los impactos como es una variable relacionada con la disponibilidad de agua, y otras de otra naturaleza para distinguir los efectos causados por otras fuentes de variación. Estos modelos se adaptan según la fase del estudio en la que nos encontremos. En primer lugar se miden los impactos directos sobre el regadío y se introduce en el modelo un factor de aleatoriedad para evaluar el riesgo económico de sequía. Esto se hace a dos niveles geográficos (provincial y de Unidad de Demanda Agraria) y además en el último se introduce no solo el riesgo de oferta sino también el riesgo de demanda de agua. La introducción de la perspectiva de riesgo en el modelo da lugar a una herramienta de gestión del riesgo económico que puede ser utilizada para estrategias de planificación. Más adelante una extensión del modelo econométrico se desarrolla para medir los impactos en el sector agrario (impactos directos sobre el regadío y el secano e impactos indirectos sobre la Agro Industria) para ello se adapta el modelo y se calculan elasticidades concatenadas entre la falta de agua y los impactos secundarios. Por último se plantea un modelo econométrico para el caso de estudio en Chile y se evalúa el impacto de las sequías debidas al fenómeno de La Niña. iv Los resultados en general muestran el valor que brinda el conocimiento más preciso acerca de los impactos, ya que en muchas ocasiones se tiende a sobreestimar los daños realmente producidos por la falta de agua. Los impactos indirectos de la sequía confirman su alcance a la vez que son amortiguados a medida que nos acercamos al ámbito macroeconómico. En el caso de Chile, su diferente gestión muestra el papel que juegan el fenómeno de El Niño y La Niña sobre los precios de los principales cultivos del país y sobre el crecimiento del sector. Para reducir las pérdidas y su alcance se deben plantear más medidas de mitigación que centren su esfuerzo en una gestión eficiente del recurso. Además la prevención debe jugar un papel muy importante para reducir los riesgos que pueden sufrirse ante situaciones de escasez. ABSTRACT Drought is a natural phenomenon that originates by the decrease in rainfall in comparison to the average, and that results in water shortages for some activities. The increasing pressure on water resources has augmented the impact of droughts just as water scarcity has become an additional problem in many parts of the planet. Countries with Mediterranean climate are especially vulnerable to drought, and its waterdependent economic growth leads to significant impacts. To reduce the negative impacts it is necessary to deal with drought vulnerability, and to achieve this objective a more efficient management is needed. The availability of information about the impacts and the scope of droughts become highly important. This research attempts to encompass the issue of drought impacts, and therefore it characterizes all impact types that may occur and also compares its effects in two different countries (Spain and Chile). Impact attribution models are proposed in order to measure the economic losses caused by the lack of water. The proposed models are based on econometric approaches and they include key variables for measuring the impacts. Variables related to water availability, crop prices or time trends are included to be able to distinguish the effects caused by any of the possible sources. These models are adapted for each of the parts of the study. First, the direct impacts on irrigation are measured and a source of variability is introduced into the model to assess the economic risk of drought. This is performed at two geographic levels provincial and Agricultural Demand Unit. In the latter, not only the supply risk is considered but also the water demand risk side. The introduction of the risk perspective into the model results in a risk management tool that can be used for planning strategies. Then an extension of the econometric model is developed to measure the impacts on the agricultural sector (direct impacts on irrigated and rainfed productions and indirect impacts on the Agri-food Industry). For this aim the model is adapted and concatenated elasticities between the lack of water and the impacts are estimated. Finally an econometric model is proposed for the Chilean case study to evaluate the impact of droughts, especially caused by El Niño Southern Oscillation. The overall results show the value of knowing better about the precise impacts that often tend to be overestimated. The models allow for measuring accurate impacts due to the lack of water. Indirect impacts of drought confirm their scope while they confirm also its dilution as we approach the macroeconomic variables. In the case of Chile, different management strategies of the country show the role of ENSO phenomena on main crop prices and on economic trends. More mitigation measures focused on efficient resource management are necessary to reduce drought losses. Besides prevention must play an important role to reduce the risks that may be suffered due to shortages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital atlases of animal development provide a quantitative description of morphogenesis, opening the path toward processes modeling. Prototypic atlases offer a data integration framework where to gather information from cohorts of individuals with phenotypic variability. Relevant information for further theoretical reconstruction includes measurements in time and space for cell behaviors and gene expression. The latter as well as data integration in a prototypic model, rely on image processing strategies. Developing the tools to integrate and analyze biological multidimensional data are highly relevant for assessing chemical toxicity or performing drugs preclinical testing. This article surveys some of the most prominent efforts to assemble these prototypes, categorizes them according to salient criteria and discusses the key questions in the field and the future challenges toward the reconstruction of multiscale dynamics in model organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a comparison of acquisition models related to decision analysis of IT supplier selection. The main standards are: Capability Maturity Model Integration for Acquisition (CMMI-ACQ), ISO / IEC 12207 Information Technology / Software Life Cycle Processes, IEEE 1062 Recommended Practice for Software Acquisition, the IT Infrastructure Library (ITIL) and the Project Management Body of Knowledge (PMBOK) guide. The objective of this paper is to compare the previous models to find the advantages and disadvantages of them for the future development of a decision model for IT supplier selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many cities in Europe have difficulties to meet the air quality standards set by the European legislation, most particularly the annual mean Limit Value for NO2. Road transport is often the main source of air pollution in urban areas and therefore, there is an increasing need to estimate current and future traffic emissions as accurately as possible. As a consequence, a number of specific emission models and emission factors databases have been developed recently. They present important methodological differences and may result in largely diverging emission figures and thus may lead to alternative policy recommendations. This study compares two approaches to estimate road traffic emissions in Madrid (Spain): the COmputer Programme to calculate Emissions from Road Transport (COPERT4 v.8.1) and the Handbook Emission Factors for Road Transport (HBEFA v.3.1), representative of the ‘average-speed’ and ‘traffic situation’ model types respectively. The input information (e.g. fleet composition, vehicle kilometres travelled, traffic intensity, road type, etc.) was provided by the traffic model developed by the Madrid City Council along with observations from field campaigns. Hourly emissions were computed for nearly 15 000 road segments distributed in 9 management areas covering the Madrid city and surroundings. Total annual NOX emissions predicted by HBEFA were a 21% higher than those of COPERT. The discrepancies for NO2 were lower (13%) since resulting average NO2/NOX ratios are lower for HBEFA. The larger differences are related to diesel vehicle emissions under “stop & go” traffic conditions, very common in distributor/secondary roads of the Madrid metropolitan area. In order to understand the representativeness of these results, the resulting emissions were integrated in an urban scale inventory used to drive mesoscale air quality simulations with the Community Multiscale Air Quality (CMAQ) modelling system (1 km2 resolution). Modelled NO2 concentrations were compared with observations through a series of statistics. Although there are no remarkable differences between both model runs, the results suggest that HBEFA may overestimate traffic emissions. However, the results are strongly influenced by methodological issues and limitations of the traffic model. This study was useful to provide a first alternative estimate to the official emission inventory in Madrid and to identify the main features of the traffic model that should be improved to support the application of an emission system based on “real world” emission factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall objective of this research project is to enrich geographic data with temporal and semantic components in order to significantly improve spatio-temporal analysis of geographic phenomena. To achieve this goal, we intend to establish and incorporate three new layers (structures) into the core of the Geographic Information by using mark-up languages as well as defining a set of methods and tools for enriching the system to make it able to retrieve and exploit such layers (semantic-temporal, geosemantic, and incremental spatio-temporal). Besides these layers, we also propose a set of models (temporal and spatial) and two semantic engines that make the most of the enriched geographic data. The roots of the project and its definition have been previously presented in Siabato & Manso-Callejo 2011. In this new position paper, we extend such work by delineating clearly the methodology and the foundations on which we will base to define the main components of this research: the spatial model, the temporal model, the semantic layers, and the semantic engines. By putting together the former paper and this new work we try to present a comprehensive description of the whole process, from pinpointing the basic problem to describing and assessing the solution. In this new article we just mention the methods and the background to describe how we intend to define the components and integrate them into the GI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane computing is a recent area that belongs to natural computing. This field works on computational models based on nature's behavior to process the information. Recently, numerous models have been developed and implemented with this purpose. P-systems are the structures which have been defined,developed and implemented to simulate the behavior and the evolution of membrane systems which we find in nature. What we show in this paper is a new model that deals with encrypted information which provides security the membrane systems communication. Moreover we find non deterministic and random applications in nature that are suitable to MEIA systems. The inherent parallelism and non determinism make this applications perfect object to implement MEIA systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A semi-automatic segmentation algorithm for abdominal aortic aneurysms (AAA), and based on Active Shape Models (ASM) and texture models, is presented in this work. The texture information is provided by a set of four 3D magnetic resonance (MR) images, composed of axial slices of the abdomen, where lumen, wall and intraluminal thrombus (ILT) are visible. Due to the reduced number of images in the MRI training set, an ASM and a custom texture model based on border intensity statistics are constructed. For the same reason the shape is characterized from 35-computed tomography angiography (CTA) images set so the shape variations are better represented. For the evaluation, leave-one-out experiments have been held over the four MRI set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some neural bruise prediction models have been implemented in the laboratory, for the most traded fruit species and varieties, allowing the prediction of the acceptability or rejectability for damages, with respect to the EC Standards. Different models have been built for both quasi-static (compression) and dynamic (impact) loads covering the whole commercial ripening period of fruits. A simulation process has been developed gathering the information on laboratory bruise models and load sensor calibrations for different electronic devices (IS-100 and DEA-1, for impact and compression loads respectively). Some evaluation methodology has been designed gathering the information on the mechanical properties of fruits and the loading records of electronic devices. The evaluation system allows to determine the current stage of fruit handling process and machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of aerial imagery, one of the first steps toward a coherent processing of the information contained in multiple images is geo-registration, which consists in assigning geographic 3D coordinates to the pixels of the image. This enables accurate alignment and geo-positioning of multiple images, detection of moving objects and fusion of data acquired from multiple sensors. To solve this problem there are different approaches that require, in addition to a precise characterization of the camera sensor, high resolution referenced images or terrain elevation models, which are usually not publicly available or out of date. Building upon the idea of developing technology that does not need a reference terrain elevation model, we propose a geo-registration technique that applies variational methods to obtain a dense and coherent surface elevation model that is used to replace the reference model. The surface elevation model is built by interpolation of scattered 3D points, which are obtained in a two-step process following a classical stereo pipeline: first, coherent disparity maps between image pairs of a video sequence are estimated and then image point correspondences are back-projected. The proposed variational method enforces continuity of the disparity map not only along epipolar lines (as done by previous geo-registration techniques) but also across them, in the full 2D image domain. In the experiments, aerial images from synthetic video sequences have been used to validate the proposed technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years new models for organizations working on overty alleviation have emerged. One of them, the social enterprise, has attracted the attention of both academics and practitioners all over the world. Even if defined in different ways depending on the context, social enterprise has an enormous potential to generate social benefits and to promote local agency and private initiative in poverty alleviation. In this sense, it is fitting to highlight the importance of identifying the main standards that permit the characterization of diverse social enterprises, in order to understand their main specificities and guarantee value generation for low-income populations. Another crucial factor is understanding innovation as a critical factor in promoting social enterprises. A powerful tool to enhance the impact and application of this model is Information and Communication Technologies. In the 21st century,these tools allow users to find new ways of collaboration, new sustainable business models and a cost-effective way of scaling-up initiatives. This paper, a product of the collaborative research between the Universidad Politécnica de Madrid and the Universidade Federal Fluminense, examines different business models for social enterprises and the role that ICT can play in scale and impact of these initiatives

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a framework specially designed to deal with structurally complex data, where all individuals have the same structure, as is the case in many medical domains. A structurally complex individual may be composed of any type of singlevalued or multivalued attributes, including time series, for example. These attributes are structured according to domain-dependent hierarchies. Our aim is to generate reference models of population groups. These models represent the population archetype and are very useful for supporting such important tasks as diagnosis, detecting fraud, analyzing patient evolution, identifying control groups, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comments This article is a U.S. government work, and is not subject to copyright in the United States. Abstract Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly 0.5 Mg ha 1 per °C. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sight distance plays an important role in road traffic safety. Two types of Digital Elevation Models (DEMs) are utilized for the estimation of available sight distance in roads: Digital Terrain Models (DTMs) and Digital Surface Models (DSMs). DTMs, which represent the bare ground surface, are commonly used to determine available sight distance at the design stage. Additionally, the use of DSMs provides further information about elements by the roadsides such as trees, buildings, walls or even traffic signals which may reduce available sight distance. This document analyses the influence of three classes of DEMs in available sight distance estimation. For this purpose, diverse roads within the Region of Madrid (Spain) have been studied using software based on geographic information systems. The study evidences the influence of using each DEM in the outcome as well as the pros and cons of using each model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Services in smart environments pursue to increase the quality of people?s lives. The most important issues when developing this kind of environments is testing and validating such services. These tasks usually imply high costs and annoying or unfeasible real-world testing. In such cases, artificial societies may be used to simulate the smart environment (i.e. physical environment, equipment and humans). With this aim, the CHROMUBE methodology guides test engineers when modeling human beings. Such models reproduce behaviors which are highly similar to the real ones. Originally, these models are based on automata whose transitions are governed by random variables. Automaton?s structure and the probability distribution functions of each random variable are determined by a manual test and error process. In this paper, it is presented an alternative extension of this methodology which avoids the said manual process. It is based on learning human behavior patterns automatically from sensor data by using machine learning techniques. The presented approach has been tested on a real scenario, where this extension has given highly accurate human behavior models,