895 resultados para Inflammation Mediators
Resumo:
The association between platelets, angiogenesis and progression or repair of periodontal disease has been little explored and, consequently, the results are inconclusive. The pathogenic bacteria present in the periodontal pocket release endotoxins that affect the endothelial integrity and are able to induce the production of chemical mediators derived from plasma proteins and blood clotting while altering platelet function. There is great interest in the modulation of platelet activity in vascular disorders, especially cardiovascular diseases. For this reason, antiplatelet drugs, that are commonly used in the prevention of thromboembolic diseases, such as myocardial infarction, ischemic stroke and peripheral arterial disease, have been used. Aspirin is the only non-steroidal antiinflammatory agent with antiplatelet activity. In the periodontium, instead of only reduces levels of inflammatory cytokines, also significantly affects bleeding on probing, suggesting a dose-dependent modulation of periodontitis. In contrast, clopidogrel and ticlopidine are thienopyridine drugs with no known antiinflammatory action, suggesting that this benefit is related to an antiinflammatory effect indirectly correlated to their antiplatelet activity already established. In the literature there is limited information about the effect of these drugs on periodontium and periodontal disease development. Antiplatelet drugs hypothetically can change both the pathogenesis of periodontitis and subsequent periodontal tissue repair by blocking the secretion of chemical mediators which in general are important in modulating inflammation and tissue repair.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Microorganisms in the pregnant female genital tract are not always associated with pathology. The factors that influence the maternal response to microorganisms remain ill defined. We review the state of knowledge of microbe-host interactions in gestational tissues and highlight mechanisms that promote tolerance or pathogenesis. Tolerance to microorganisms is promoted during pregnancy by several mechanisms including upregulation of anti-inflammatory mediators, induction of endotoxin tolerance, and possibly by regulation of autophagy. Conversely, an altered vaginal microbiota or a pre-existing viral presence may result in induction of excessive inflammation and preterm labor. Although infections play a prevalent role in preterm birth, microbes are present in gestational tissues of women with healthy outcomes and may provide beneficial functions. The complex interactions between different microbial species and the maternal immune system during gestation remain incompletely elucidated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We review evidence that Stem Cell Factor (SCF) plays an important role in the pathophysiology of asthma. SCF is produced by a wide variety of cells present in asthmatic lung, including mast cells and eosinophils. Its receptor, c-kit, is broadly expressed on mature mast cells and eosinophils. SCF promotes recruitment of mast cell progenitors into tissues, as well as their local maturation and activation. It also promotes eosinophil survival, maturation and functional activation. SCF enhances IgE-dependent release of mediators from mast cells, including histamine, leukotrienes, cytokines (TNF-alpha, IL-5, GM-CSF) and chemokines (RANTES/CCL5, MCP-1/CCL2, TARC/CCL17 e MDC/CCL22); it is required for IL-4 production in mast cells. SCF, acting in concert with IgE, also upregulates the expression and function of CC chemokine receptors in mast cells. Structural and resident airway cells express increased levels of SCF in the bronchus of asthmatic patients. In a murine model of asthma, allergen exposure increased production of SCF by epithelial cells and alveolar macrophages, which was transient and paralleled by histamine release. SCF induced long-lived airway hyperreactivity, which was prevented by local neutralization of SCF, as well as by inhibitors of the production or activity of cysteinyl-leukotrienes. Together, these observations suggest that SCF has an important role in asthma.
Resumo:
Dyslipidemia and inflammation are frequently found in some diseases, such as obesity, type 2 diabetes mellitus, and cancer cachexia. Recent literature has identified that lipids have a pivotal role in the activation of inflammatory pathways, increasing the production of inflammatory cytokines, mainly tumor necrosis factor alpha, interleukin 6 and 1β. On the other hand, cytokines can promote disruption of lipid metabolism, in special cholesterol reverse transport, which is linked to development of atherosclerosis. With this in mind, acute and chronic exercise trainings have been pointed as important tools to counteract both dyslipidemia symptoms and systemic inflammation. Moreover, physical activity has been recommended in the prevention/treatment of the above mentioned outcomes by important health organizations around the world, mainly because it costs less and generates fewer side effects than isolated medicine. Despite the well-documented capacity of acute and chronic exercise training to counteract sustained disease-related immunometabolism, we have chosen to take a look from a current perspective in molecular pathways and in the field of epidemiology. The aim of the present review was therefore to discuss the results of dyslipidemia and inflammatory conditions with acute and chronic exercise training, which underlies the field of molecular pathways and epidemiology. The mechanisms underlying the response to the treatment are considered.
Resumo:
Chronic and excessive alcohol consumption is an established risk for hepatic inflammation and carcinogenesis. Luteolin is one of the most common flavonoids present in plants and has potential beneficial effects against cancer. In this study, we examined the effect and potential mechanisms of luteolin supplementation in a carcinogen initiated alcohol-promoted pre-neoplastic liver lesion mouse model. C57BL/6 mice were injected with diethylnitrosamine (DEN) [i.p. 25 mg/kg of body weight (BW)] at 14 days of age. At 8 weeks of age mice were group pair-fed with Lieber-DeCarli liquid control diet or alcoholic diet [ethanol (EtOH) diet, 27% total energy from ethanol] and supplemented with a dose of 30 mg luteolin/kg BW per day for 21 days. DEN-injected mice fed EtOH diet displayed a significant induction of pre-neoplastic lesions, a marker associated with presence of steatosis and inflammation. Dietary luteolin significantly reduced the severity and incidence of hepatic inflammatory foci and steatosis in DEN-injected mice fed EtOH diet, as well the presence of preneoplastic lesions. There was no difference on hepatic protein levels of sirtuin 1 (SIRT1) among all groups; however, luteolin supplementation significantly reversed alcohol-reduced SIRT1 activity assessed by the ratio of acetylated and total forkhead box protein O1 (FoXO1) and SIRT1 target proliferator-activated receptor gamma, coactivator 1 alpha (PGC1α). Dietary intake of luteolin prevents alcohol promoted pre-neoplastic lesions, potentially mediated by SIRT1 signaling pathway.