971 resultados para Industrial Material Exchange Service.
Resumo:
Lipid peroxidation is a complex mechanism that causes the degradation of lipid material of both industrial and biological significance. During processing, it is known that thermal stress produces oxidation and polymerization of oils. Additionally, biological lipids with both structural and bioactive roles are prone to peroxidation, which can have pathogenic effects including cancer and long-term degenerative disorders. To create innovative strategies to slow down the deterioration of lipids, it is crucial to improve our understanding of oxidation reactions and kinetics. To this purpose, Chapter II of this thesis focuses on the kinetic study of the oxidation reactions that take place during the thermal processing of bio-oils for industrial application. Through a new method it was possible to evaluate the kinetic parameters of oxidation of various lipid materials. This allowed us to distinguish between the different lipid materials based on their intrinsic properties. The effect of 18 antioxidants from the major families of natural and synthetic phenols were studied using the same methodology in order to acquire crucial data for enhancing the antioxidant activity of phenols based on structure-activity at high temperatures. Finally, it has been described how the antioxidant activity of α-tocopherol, revealed to be scarce in our conditions, can be improved in the presence of gamma-terpinene, through a synergistic action. Chapter III describes the synthesis and study of the antioxidant activity of polydopamine nanoparticles, in order to clarify the unclear mechanism of action of this material. Finally, in Chapter IV it was reported how the gamma-terpinene strongly inhibits the peroxidation of unsaturated lipids in heterogeneous model systems (micelles and liposomes) by forming hydroperoxyl radicals which diffuse outside the lipid nucleus, blocking the propagation of the chain radical. Furthermore, gamma-terpinene shows a very potent protective activity against ferroptosis being effective in the nanomolar range in the human neuroblastoma cell model.
Resumo:
The pervasive availability of connected devices in any industrial and societal sector is pushing for an evolution of the well-established cloud computing model. The emerging paradigm of the cloud continuum embraces this decentralization trend and envisions virtualized computing resources physically located between traditional datacenters and data sources. By totally or partially executing closer to the network edge, applications can have quicker reactions to events, thus enabling advanced forms of automation and intelligence. However, these applications also induce new data-intensive workloads with low-latency constraints that require the adoption of specialized resources, such as high-performance communication options (e.g., RDMA, DPDK, XDP, etc.). Unfortunately, cloud providers still struggle to integrate these options into their infrastructures. That risks undermining the principle of generality that underlies the cloud computing scale economy by forcing developers to tailor their code to low-level APIs, non-standard programming models, and static execution environments. This thesis proposes a novel system architecture to empower cloud platforms across the whole cloud continuum with Network Acceleration as a Service (NAaaS). To provide commodity yet efficient access to acceleration, this architecture defines a layer of agnostic high-performance I/O APIs, exposed to applications and clearly separated from the heterogeneous protocols, interfaces, and hardware devices that implement it. A novel system component embodies this decoupling by offering a set of agnostic OS features to applications: memory management for zero-copy transfers, asynchronous I/O processing, and efficient packet scheduling. This thesis also explores the design space of the possible implementations of this architecture by proposing two reference middleware systems and by adopting them to support interactive use cases in the cloud continuum: a serverless platform and an Industry 4.0 scenario. A detailed discussion and a thorough performance evaluation demonstrate that the proposed architecture is suitable to enable the easy-to-use, flexible integration of modern network acceleration into next-generation cloud platforms.
Resumo:
Elaborate presents automated guided vehicle state-of-art, describing AGVs' types and employed technologies. AGVs' applications is going to be exposed by means of performed work during Toyota's internship. It will be presented the acquired experience on automatic forklifts' implementation and tools employed in a realization of an AGV system. Morover, it will be presented the development of a python program able to retrieve data, stored in a database, and elaborate them to produce heatmaps on vehicles' errors. The said program has been tested live on customer's sites and obtained result will be explained. Finally, it is going to be presented the analysis on natural navigation technology applied to Toyota's AGVs. Tests on natural navigation have been run in warehouses to estimate capabilities and possible application in logistic field.
Resumo:
Today more than ever, with the recent war in Ukraine and the increasing number of attacks that affect systems of nations and companies every day, the world realizes that cybersecurity can no longer be considered just as a “cost”. It must become a pillar for our infrastructures that involve the security of our nations and the safety of people. Critical infrastructure, like energy, financial services, and healthcare, have become targets of many cyberattacks from several criminal groups, with an increasing number of resources and competencies, putting at risk the security and safety of companies and entire nations. This thesis aims to investigate the state-of-the-art regarding the best practice for securing Industrial control systems. We study the differences between two security frameworks. The first is Industrial Demilitarized Zone (I-DMZ), a perimeter-based security solution. The second one is the Zero Trust Architecture (ZTA) which removes the concept of perimeter to offer an entirely new approach to cybersecurity based on the slogan ‘Never Trust, always verify’. Starting from this premise, the Zero Trust model embeds strict Authentication, Authorization, and monitoring controls for any access to any resource. We have defined two architectures according to the State-of-the-art and the cybersecurity experts’ guidelines to compare I-DMZ, and Zero Trust approaches to ICS security. The goal is to demonstrate how a Zero Trust approach dramatically reduces the possibility of an attacker penetrating the network or moving laterally to compromise the entire infrastructure. A third architecture has been defined based on Cloud and fog/edge computing technology. It shows how Cloud solutions can improve the security and reliability of infrastructure and production processes that can benefit from a range of new functionalities, that the Cloud could offer as-a-Service.We have implemented and tested our Zero Trust solution and its ability to block intrusion or attempted attacks.
Resumo:
In a world where the problem of energy resources, pollution and all aspects related to these issues become more and more dominant, a greater commitment is needed in the search for solutions. The goal of this project is to make a contribution to the research and development of new materials to reduce the environmental impact in some fields. First of all, we tried to synthesize and prepare an isatin-based membrane which has the potential for use in separating industrial gases. Furthermore, ion exchange membranes, specifically hydroxide exchange membranes (HEMs) derived from the same product can be developed for fuel cells (HEMFC) applications. These materials are essential for energy conversion and storage. The most difficult challenge is to guarantee their thermal stability and stability in corrosive environments such as alkali without losing efficiency. In recent years the poly- hydroxyalkylation catalysed with superacids, e.g. TFSA, has become increasingly studied. This reaction is exploited for the synthesis of the compounds of this thesis. After a preliminary optimization of the reaction conditions it was concluded that due to the rigidity and excessive reactivity of the system, it was not possible to obtain the isatin-based membrane to evaluate the gas separation properties. The synthesis of precursor materials for HEMs was successful by using 1-(4-bromobutyl)indoline-2,3-dione (BID) instead of isatin. A characterization of the obtained polymers was carried out using NMR, TGA and DSC analyses, and subsequently the membranes were functionalized with different ammonium-based cations. Unfortunately, this last step was not successful due to the appearance of side reactions. Future studies on the mechanism and kinetics of the reaction solve this obstacle.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.
Resumo:
Surgical treatment for enterocutaneous fistulas (EF) frequently fails. Cell therapy may represent a new approach to treatment. Mesenchymal stromal cells (MSCs) have high proliferative and differentiation capacity. This study aimed to investigate whether MSCs could adhere to suture filament (SF), promoting better EF healing. MSCs, 1 × 10(6), from adipose tissue (ATMSCs) were adhered to a Polyvicryl SF by adding a specific fibrin glue formulation. Adhesion was confirmed by confocal and scanning electron microscopy (SEM). A cecal fistula was created in 22 Wistar rats by incising the cecum and suturing the opening to the surgical wound subcutaneously with four separate stitches. The animals were randomly allocated to three groups: control (CG)-five animals, EF performed; injection (IG)-eight animals 1 × 10(6) ATMSCs injected around EF borders; and suture filament (SG): nine animals, sutured with 1 × 10(6) ATMSCs attached to the filaments with fibrin glue. Fistulas were photographed on the operation day and every 3 days until the 21st day and analyzed by two observers using ImageJ Software. Confocal and SEM results demonstrated ATMSCs adhered to SF (ATMSCs-SF). The average reduction size of the fistula area at 21st day was greater for the SG group (90.34%, P < 0.05) than the IG (71.80%) and CG (46.54%) groups. ATMSCs adhered to SF maintain viability and proliferative capacity. EF submitted to ATMSCs-SF procedure showed greater recovery and healing. This approach might be a new and effective tool for EF treatment.
Resumo:
Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g-1. The thermal analysis indicates that above 600°C there is no significant mass loss.
Resumo:
The aim of this work is to obtain, purify and characterize biochemically a peroxidase from Copaifera langsdorffii leaves (COP). COP was obtained by acetone precipitation followed by ion-exchange chromatography. Purification yielded 3.5% of peroxidase with the purification factor of 46.86. The COP optimum pH is 6.0 and the temperature is 35 ºC. COP was stable in the pH range of 4.5 to 9.3 and at temperatures below 50.0 ºC. The apparent Michaelis-Menten constants (Km) for guaiacol and H2O2 were 0.04 mM and 0.39 mM respectively. Enzyme turnover was 0.075 s-1 for guaiacol and 0.28 s-1 for hydrogen peroxide. Copaifera langsdorffii leaves showed to be a rich source of active peroxidase (COP) during the whole year. COP could replace HRP, the most used peroxidase, in analytical determinations and treatment of industrial effluents at low cost.
Resumo:
This work was done with the objective of studying some physical and mechanical characteristics of the sugarcane bagasse ash added to a soil-cement mixture, in order to obtain an alternative construction material. The sugarcane bagasse ash pre-treatment included both sieving and grinding, before mixing with soil and cement. Different proportions of cement-ash were tested by determining its standard consistence and its compressive resistance at 7 and 28 days age. The various treatments were subsequently applied to the specimens molded with different soil-cement-ash mixtures which in turns were submitted to compaction, unconfined compression and water absorption laboratory tests. The results showed that it is possible to replace up to 20% of Portland cement by sugarcane bagasse ash without any damage to the mixture's compressive strength.
Resumo:
The main objective of this work is the study of the effect of rice husk addition on the physical and mechanical properties of soil-cement, in order to obtain an alternative construction material. The rice husk preparation consisted of grinding, sieving, and the pre-treatment with lime solution. The physical characteristics of the soil and of the rice husk were determined. Different amounts of soil, cement and rice husk were tested by compaction and unconfined compression. The specimens molded according to the treatments applied to the mixtures were subsequently submitted to compression testing and to tensile splitting cylinder testing at 7 and 28 days of age and to water absorption testing. After determining its physical and mechanical characteristics, the best results were obtained for the soil + 12% (cement + rice husk) mixture. The results showed a promising use as an alternative construction material.
Resumo:
We estimate litter production and leaf decomposition rate in a cerradão area, physiognomy little studied and very threatened in São Paulo State. During the period of study, litter production was 5646.9 kg.ha-1.year-1, which the 'leaf' fraction corresponded to 4081.2 kg.ha¹.year¹; the 'branch' fraction, to 1066.1 kg.ha-1.year-1; the 'reproductive structures' fraction, to 434.1 kg.ha-1.year-1; and the 'miscellaneous' fraction to 65.5 kg.ha-1.year-1. Litter production was highly seasonal and negatively correlated with relative humidity and air temperature. Leaf production was negatively correlated with relative humidity, rainfall, and air temperature. There was no significant difference between litter production found in this study and those in two other sites with cerradão and semideciduous forest, but these physiognomies differed significantly from the cerrado sensu stricto. Leaf decomposition rate (K) was 0.56. Half-life of the decomposing material was 1.8 years and turnover time was 2.3 years.
Resumo:
This aim of this work was to carry out an epidemiological study on acetabular fractures in the city of Campinas and surrounds, in view of the few published papers on this subject. Medical files with a diagnosis of acetabular fracture between the years 2004 and 2008 that were made available by the Medical Archiving Service of Hospital das Clínicas, State University of Campinas (UNICAMP) were analyzed by six observers. Data on patients' ages, sex, side affected by the fracture, mechanism of injury, material used for synthesis, complications of the operation, associated fractures, length of hospitalization before and after the surgery, time of total internment and number of physiotherapy sessions before and after the surgery were gathered. It was observed in this population that the left side was more affected; the mechanism of injury that most often caused this type of fracture was automobile accidents; injuries to the sciatic nerve were the commonest surgical complications; and the synthesis material most used was reconstruction plates.
Resumo:
Culture supernatant of Staphylococcus aureus 722 in 3% triptone plus 1% yeast extract was used for EEA purification, proceeding comparison between dye ligand Red A affinity chromatography and classic chromatography. The capture of SEA with Amberlite CG-50 allowed rapid enterotoxin concentration from the culture supernatant. However, the ratio of 15 mg of the resin to a total of 150 mg of the toxin satured the resin, giving only 10 to 30% of SEA recuperation from the supernatant. The elution of concentrated material throught the Red A column resulted in a recovery of 60,87% of the toxin, and required 76 hours, indicating advantage on classic chromatography. Ion exchange column plus gel filtration recovered only 6,5 % of the SEA, and required 114 hours to conclude the procedure. The eletrophoresis of purified SEA indicated high grade of toxin obtained from Red A column, with 90 % of purity, compared to 60 % of classic column.