797 resultados para Indium.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low dimensional nanostructures, such as nanotubes and 2D sheets, have unique and promising material properties both from a fundamental science and an application standpoint. Theoretical modelling and calculations predict previously unobserved phenomena that experimental scientists often struggle to reproduce because of the difficulty in controlling and characterizing the small structures under real-world constraints. The goal of this dissertation is to controlling these structures so that nanostructures can be characterized in-situ in transmission electron microscopes (TEM) allowing for direct observation of the actual physical responses of the materials to different stimuli. Of most interest to this work are the thermal and electrical properties of carbon nanotubes, boron nitride nanotubes, and graphene. The first topic of the dissertation is using surfactants for aqueous processing to fabricate, store, and deposit the nanostructures. More specifically, thorough characterization of a new surfactant, ammonium laurate (AL), is provided and shows that this new surfactant outperforms the standard surfactant for these materials, sodium dodecyl sulfate (SDS), in almost all tested metrics. New experimental set-ups have been developed by combining specialized in-situ TEM holders with innovative device fabrication. For example, electrical characterization of graphene was performed by using an STM-TEM holder and depositing graphene from aqueous solutions onto lithographically patterned, electron transparent silicon nitride membranes. These experiments produce exciting information about the interaction between graphene and metal probes and the substrate that it rests on. Then, by adding indium to the backside of the membrane and employing the electron thermal microscopy (EThM) technique, the same type of graphene samples could be characterized for thermal transport with high spatial resolution. It is found that reduced graphene oxide sheets deposited onto a silicon nitride membrane and displaying high levels of wrinkling have higher than expected electrical and thermal conduction properties. We are clearly able to visualize the ability of graphene to spread heat away from an electronic hot spot and into the substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planar <110> GaAs nanowires and quantum dots grown by atmospheric MOCVD have been introduced to non-standard growth conditions such as incorporating Zn and growing them on free-standing suspended films and on 10° off-cut substrates. Zn doped nanowires exhibited periodic notching along the axis of the wire that is dependent on Zn/Ga gas phase molar ratios. Planar nanowires grown on suspended thin films give insight into the mobility of the seed particle and change in growth direction. Nanowires that were grown on the off-cut sample exhibit anti-parallel growth direction changes. Quantum dots are grown on suspended thin films and show preferential growth at certain temperatures. Envisioned nanowire applications include twin-plane superlattices, axial pn-junctions, nanowire lasers, and the modulation of nanowire growth direction against an impeding barrier and varying substrate conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deposition of indium tin oxide (ITO) among various transparent conductive materials on flexible organic substrates has been intensively investigated among academics and industrials for a whole new array of imaginative optoelectronic products. One critical challenge coming with the organic materials is their poor thermal endurances, considering that the process currently used to produce industry-standard ITO usually involves relatively high substrate temperature in excess of 200°C and post-annealing. A lower processing temperature is thus demanded, among other desires of high deposition rate, large substrate area, good uniformity, and high quality of the deposited materials. For this purpose, we developed an RF-assisted closed-field dual magnetron sputtering system. The “prototype” system consists of a 3-inch unbalanced dual magnetron operated at a closed-field configuration. An RF coil was fabricated and placed between the two magnetron cathodes to initiate a secondary plasma. The concept is to increase the ionization faction with the RF enhancement and utilize the ion energy instead of thermal energy to facilitate the ITO film growth. The closed-field unbalanced magnetrons create a plasma in the intervening region rather than confine it near the target, thus achieving a large-area processing capability. An RF-compensated Langmuir probe was used to characterize and compare the plasmas in mirrored balanced and closed-field unbalanced magnetron configurations. The spatial distributions of the electron density ne and electron temperature Te were measured. The density profiles reflect the shapes of the plasma. Rather than intensively concentrated to the targets/cathodes in the balanced magnetrons, the plasma is more dispersive in the closed-field mode with a twice higher electron density in the substrate region. The RF assistance significantly enhances ne by one or two orders of magnitude higher. The effect of various other parameters, such as pressure, on the plasma was also studied. The ionization fractions of the sputtered atoms were measured using a gridded energy analyzer (GEA) combined with a quartz crystal microbalance (QCM). The presence of the RF plasma effectively increases the ITO ionization fraction to around 80% in both the balanced and closed-field unbalanced configurations. The ionization fraction also varies with pressure, maximizing at 5-10 mTorr. The study of the ionization not only facilitates understanding the plasma behaviors in the RF-assisted magnetron sputtering, but also provides a criterion for optimizing the film deposition process. ITO films were deposited on both glass and plastic (PET) substrates in the 3-inch RF-assisted closed-field magnetrons. The electrical resistivity and optical transmission transparency of the ITO films were measured. Appropriate RF assistance was shown to dramatically reduce the electrical resistivity. An ITO film with a resistivity of 1.2×10-3 Ω-cm and a visible light transmittance of 91% was obtained with a 225 W RF enhancement, while the substrate temperature was monitored as below 110°C. X-ray photoelectron spectroscopy (XPS) was employed to confirm the ITO film stoichiometry. The surface morphology of the ITO films and its effect on the film properties were studied using atomic force microscopy (AFM). The prototype of RF-assisted closed-field magnetron was further extended to a larger rectangular shaped dual magnetron in a flat panel display manufacturing system. Similar improvement of the ITO film conductivities by the auxiliary RF was observed on the large-area PET substrates. Meanwhile, significant deposition rates of 25-42 nm/min were achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gold is one of the most widely used metals for building up plasmonic devices. Although slightly less efficient than silver for producing sharp resonance, its chemical properties make it one of the best choices for designing sensors. Sticking gold on a silicate glass substrate requires an adhesion layer, whose effect has to be taken into account. Traditionally, metals (Cr or Ti) or dielectric materials (TiO2 or Cr2O3 ) are deposited between the glass and the nanoparticle. Recently, indium tin oxide and (3-mercaptopropyl)trimethoxysilane (MPTMS) were used as a new adhesion layer. The aim of this work is to compare these six adhesion layers for surface- enhanced Raman scattering sensors by numerical modeling. The near-field and the far-field optical responses of gold nanocylinders on the different adhesion layers are then calculated. It is shown that MPTMS leads to the highest field enhancement, slightly larger than other dielectric materials. We attributed this effect to the lower refractive index of MPTMS compared with the others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les antimoniures sont des semi-conducteurs III-V prometteurs pour le développement de dispositifs optoélectroniques puisqu'ils ont une grande mobilité d'électrons, une large gamme spectrale d'émission ou de détection et offrent la possibilité de former des hétérostructures confinées dont la recombinaison est de type I, II ou III. Bien qu'il existe plusieurs publications sur la fabrication de dispositifs utilisant un alliage d'In(x)Ga(1-x)As(y)Sb(1-y) qui émet ou détecte à une certaine longueur d'onde, les détails, à savoir comment sont déterminés les compositions et surtout les alignements de bande, sont rarement explicites. Très peu d'études fondamentales sur l'incorporation d'indium et d'arsenic sous forme de tétramères lors de l'épitaxie par jets moléculaires existent, et les méthodes afin de déterminer l'alignement des bandes des binaires qui composent ces alliages donnent des résultats variables. Un modèle a été construit et a permis de prédire l'alignement des bandes énergétiques des alliages d'In(x)Ga(1-x)As(y)Sb(1-y) avec celles du GaSb pour l'ensemble des compositions possibles. Ce modèle tient compte des effets thermiques, des contraintes élastiques et peut aussi inclure le confinement pour des puits quantiques. De cette manière, il est possible de prédire la transition de type de recombinaison en fonction de la composition. Il est aussi montré que l'indium ségrègue en surface lors de la croissance par épitaxie par jets moléculaires d'In(x)Ga(1-x)Sb sur GaSb, ce qui avait déjà été observé pour ce type de matériau. Il est possible d'éliminer le gradient de composition à cette interface en mouillant la surface d'indium avant la croissance de l'alliage. L'épaisseur d'indium en surface dépend de la température et peut être évaluée par un modèle simple simulant la ségrégation. Dans le cas d'un puits quantique, il y aura une seconde interface GaSb sur In(x)Ga(1-x)Sb où l'indium de surface ira s'incorporer. La croissance de quelques monocouches de GaSb à basse température immédiatement après la croissance de l'alliage permet d'incorporer rapidement ces atomes d'indium et de garder la seconde interface abrupte. Lorsque la composition d'indium ne change plus dans la couche, cette composition correspond au rapport de flux d'atomes d'indium sur celui des éléments III. L'arsenic, dont la source fournit principalement des tétramères, ne s'incorpore pas de la même manière. Les tétramères occupent deux sites en surface et doivent interagir par paire afin de créer des dimères d'arsenic. Ces derniers pourront alors être incorporés dans l'alliage. Un modèle de cinétique de surface a été élaboré afin de rendre compte de la diminution d'incorporation d'arsenic en augmentant le rapport V/III pour une composition nominale d'arsenic fixe dans l'In(x)Ga(1-x)As(y)Sb(1-y). Ce résultat s'explique par le fait que les réactions de deuxième ordre dans la décomposition des tétramères d'arsenic ralentissent considérablement la réaction d'incorporation et permettent à l'antimoine d'occuper majoritairement la surface. Cette observation montre qu'il est préférable d'utiliser une source de dimères d'arsenic, plutôt que de tétramères, afin de mieux contrôler la composition d'arsenic dans la couche. Des puits quantiques d'In(x)Ga(1-x)As(y)Sb(1-y) sur GaSb ont été fabriqués et caractérisés optiquement afin d'observer le passage de recombinaison de type I à type II. Cependant, celui-ci n'a pas pu être observé puisque les spectres étaient dominés par un niveau énergétique dans le GaSb dont la source n'a pu être identifiée. Un problème dans la source de gallium pourrait être à l'origine de ce défaut et la résolution de ce problème est essentielle à la continuité de ces travaux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les petites molécules de type p à bandes interdites étroites sont de plus en plus perçues comme des remplaçantes possibles aux polymères semi-conducteurs actuellement utilisés conjointement avec des dérivés de fullerènes de type n, dans les cellules photovoltaïques organiques (OPV). Par contre, ces petites molécules tendent à cristalliser facilement lors de leur application en couches minces et forment difficilement des films homogènes appropriés. Des dispositifs OPV de type hétérojonction de masse ont été réalisés en ajoutant différentes espèces de polymères semi-conducteurs ou isolants, agissant comme matrices permettant de rectifier les inhomogénéités des films actifs et d’augmenter les performances des cellules photovoltaïques. Des polymères aux masses molaires spécifiques ont été synthétisés par réaction de Wittig en contrôlant précisément les ratios molaires des monomères et de la base utilisée. L’effet de la variation des masses molaires en fonction des morphologies de films minces obtenus et des performances des diodes organiques électroluminescentes reliées, a également été étudié. La microscopie électronique en transmission (MET) ou à balayage (MEB) a été employée en complément de la microscopie à force atomique (AFM) pour suivre l’évolution de la morphologie des films organiques minces. Une nouvelle méthode rapide de préparation des films pour l’imagerie MET sur substrats de silicium est également présentée et comparée à d’autres méthodes d’extraction. Motivé par le prix élevé et la rareté des métaux utilisés dans les substrats d’oxyde d’indium dopé à l’étain (ITO), le développement d’une nouvelle méthode de recyclage eco-responsable des substrats utilisés dans ces études est également présenté.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Tecnologias Química e Biológica, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transmission electron microscopy and spatially resolved electron energy-loss spectroscopy have been applied to investigate the indium distribution and the interface morphology in axial (In,Ga)N/GaN nanowire heterostructures. The ordered axial (In,Ga)N/GaN nanowire heterostructures with an indium concentration up to 80% are grown by molecular beam epitaxy on GaN-buffered Si(111) substrates. We observed a pronounced lattice pulling effect in all the nanowire samples given in a broad transition region at the interface. The lattice pulling effect becomes smaller and the (In,Ga)N/GaN interface width is reduced as the indium concentration is increased in the (In,Ga)N section. The result can be interpreted in terms of the increased plastic strain relaxation via the generation of the misfit dislocations at the interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results of scanning transmission electron tomography on GaN/(In,Ga)N/GaN nanocolumns (NCs) that grew uniformly inclined towards the patterned, semi-polar GaN( 112̄ 2 ) substrate surface by molecular beam epitaxy. For the practical realization of the tomographic experiment, the nanocolumn axis has been aligned parallel to the rotation axis of the electron microscope goniometer. The tomographic reconstruction allows for the determination of the three-dimensional indium distribution inside the nanocolumns. This distribution is strongly interrelated with the nanocolumn morphology and faceting. The (In,Ga)N layer thickness and the indium concentration differ between crystallographically equivalent and non-equivalent facets. The largest thickness and the highest indium concentration are found at the nanocolumn apex parallel to the basal planes.