972 resultados para Indian ocean
Resumo:
Eocene-Oligocene radiolarians from Ocean Drilling Program Sites 699, 702, and 703, Leg 114 of the Subantarctic Atlantic were examined in order to extend the tripartite zonation for the recovered cores based on results of similar analysis of Leg 120 submarine sediments from the Indian Ocean. Correlation of the two oceans is made by examining 23 biohorizons and the three zones, Eucyrtidium spinosum, Axoprunum irregularis, and Lychnocanoma conica, in ascending stratigraphic order. One new species, Eucyrtidium nishimurae, is described.
Resumo:
Cation exchange experiments (ammonium acetate and cation resin) on celadonite-smectite vein minerals from three DSDP holes demonstrate selective removal of common Sr relative to Rb and radiogenic Sr. This technique increases the Rb/Sr ratio by factors of 2.3 to 22 without significantly altering the age of the minerals, allowing easier and more precise dating of such vein minerals. The ages determined by this technique (Site 261 - 121.4+/-1.6 m.y.; Site 462A - 105.1+/-2.8 m.y.; Site 516F - 69.9+/-2.4 m.y.) are 34, 54 and 18 m.y. younger, respectively, than the age of crust formation at the site; in the case of site 462A, the young age is clearly related to off-ridge emplacement of a massive sill/flow complex. At the other sites, either the hydrothermal circulation systems persisted longer than for normal crust (10-15 m.y.), or were reactivated by off-ridge igneous activity. Celadonites show U and Pb contents and Pb isotopic compositions little changed from their basalt precursors, while Th contents are significantly lower. Celadonites thus have unusually high alkali/U,Th ratios and low Th/U ratios. If this celadonite alteration signature is significantly imprinted on oceanic crust as a whole, it will lead to very distinctive Pb isotope signatures for any hot spot magmas which contain a component of aged subducted recycled oceanic crust. Initial Sr isotope ratios of ocean crust vein minerals (smectite, celadonite, zeolite, calcite) are intermediate between primary basalt values and contemporary sea water values and indicate formation under seawaterdominated systems with effective water/rock ratios of 20-200.
Resumo:
Early to middle Miocene radiolarian assemblages were examined at three sites (747, 748, and 751) that were cored during Ocean Drilling Program Leg 120 south of the present polar frontal zone on the Kerguelen Plateau (Indian sector of the Southern Ocean). The radiolarian biostratigraphic study relies on a radiolarian zonation recently developed on Leg 113 materials in the Atlantic sector of the Southern Ocean, which is correlated with the geomagnetic time scale. New radiolarian biostratigraphic data also considering the established geomagnetic polarity record were used to improve and emend the age calibration of some lower Miocene radiolarian zones and a redefined middle Miocene radiolarian zonation is proposed. Based on these results, a revised age assignment of the lower Miocene sections drilled at Leg 113 Sites 689 and 690 is proposed.
Resumo:
Magnesium/calcium data from Southern Ocean planktonic foraminifera demonstrate that high-latitude (~55°S) southwest Pacific sea surface temperatures (SSTs) cooled 6° to 7°C during the middle Miocene climate transition (14.2 to 13.8 million years ago). Stepwise surface cooling is paced by eccentricity forcing and precedes Antarctic cryosphere expansion by ~60 thousand years, suggesting the involvement of additional feedbacks during this interval of inferred low-atmospheric partial pressure of CO2 (pCO2). Comparing SSTs and global carbon cycling proxies challenges the notion that episodic pCO2 drawdown drove this major Cenozoic climate transition. SST, salinity, and ice-volume trends suggest instead that orbitally paced ocean circulation changes altered meridional heat/vapor transport, triggering ice growth and global cooling.
Resumo:
A new method of quantitative analysis of quartz and opal in bottom sediments is developed. It is based on the study of sediment samples in form of suspensions in petrolatum where potassium rhodanate is added as an internal standard.
Resumo:
We characterize the textural and geochemical features of ocean crustal zircon recovered from plagiogranite, evolved gabbro, and metamorphosed ultramafic host-rocks collected along present-day slow and ultraslow spreading mid-ocean ridges (MORs). The geochemistry of 267 zircon grains was measured by sensitive high-resolution ion microprobe-reverse geometry at the USGS-Stanford Ion Microprobe facility. Three types of zircon are recognized based on texture and geochemistry. Most ocean crustal zircons resemble young magmatic zircon from other crustal settings, occurring as pristine, colorless euhedral (Type 1) or subhedral to anhedral (Type 2) grains. In these grains, Hf and most trace elements vary systematically with Ti, typically becoming enriched with falling Ti-in-zircon temperature. Ti-in-zircon temperatures range from 1,040 to 660°C (corrected for a TiO2 ~ 0.7, a SiO2 ~ 1.0, pressure ~ 2 kbar); intra-sample variation is typically ~60-15°C. Decreasing Ti correlates with enrichment in Hf to ~2 wt%, while additional Hf-enrichment occurs at relatively constant temperature. Trends between Ti and U, Y, REE, and Eu/Eu* exhibit a similar inflection, which may denote the onset of eutectic crystallization; the inflection is well-defined by zircons from plagiogranite and implies solidus temperatures of ~680-740°C. A third type of zircon is defined as being porous and colored with chaotic CL zoning, and occurs in ~25% of rock samples studied. These features, along with high measured La, Cl, S, Ca, and Fe, and low (Sm/La)N ratios are suggestive of interaction with aqueous fluids. Non-porous, luminescent CL overgrowth rims on porous grains record uniform temperatures averaging 615 ± 26°C (2SD, n = 7), implying zircon formation below the wet-granite solidus and under water-saturated conditions. Zircon geochemistry reflects, in part, source region; elevated HREE coupled with low U concentrations allow effective discrimination of ~80% of zircon formed at modern MORs from zircon in continental crust. The geochemistry and textural observations reported here serve as an important database for comparison with detrital, xenocrystic, and metamorphosed mafic rock-hosted zircon populations to evaluate provenance.
Resumo:
Selected calcareous nannofossils were investigated by means of quantitative methods in middle and upper Miocene sediments from the tropical Indian Ocean (ODP Leg 115) and equatorial Pacific Ocean (DSDP Leg 85, ODP Legs 130 and 138). Our goal was to test the reliability of the classic biohorizons used in the standard zonations of Martini (1971) and Bukry (1973) and, possibly, to improve biostratigraphic resolution in the Miocene. In a time interval of about 8 m.y., from the last occurrence (LO) of S. heteromorphus (~13.6 Ma) to the LO of D. quinqueramus (~5.5 Ma), a total 37 events were investigated, using both the conventional and some additional markers proposed in the literature. At least 17 of these events proved to be distinct biostratigraphic correlation lines between the two considered areas. This integrated biostratigraphic framework increases the biostratigraphic resolution in the middle-upper Miocene interval (of the order of about 0.5 m.y). All the investigated events were tied to the geomagnetic polarity time scale (GPTS) and compared to biomagnetostratigraphy from mid-latitude North Atlantic Site 94-608 (Olafsson, 1991; Gartner, 1992), thus obtaining further information about the biostratigraphic and biochronologic reliability of the investigated events and a significant improvement of the available nannofossil biomagnetostratigraphic model for the middle and late Miocene.
Resumo:
The isotopic and micropaleontological deglacial records of three deep-sea cores from 44°S to 55°S have been dated by accelerator mass spectrometry. The available records did not allow accurate dating of the initiation of the deglaciation. By 13,000 years B.P., sea surface temperatures reached values similar to the present values. A cool oscillation abruptly interrupted this warm phase between 12,000 and 11,000 years B.P. Initiation of this cooling therefore preceded the northern hemisphere Younger Dryas by approximately 1000 years. Complete warming was reached by 10,000 years B.P., more or less synchronous with the northeast Atlantic Ocean.
Resumo:
Nutrition of 6 deep-sea ophiuroid species of the genus Amphiophiura in the Pacific and Indian Oceans has been studied. One species is a detritus-feeder while the others are carnivorous. All 6 are widespread in deep-sea eutrophic regions of both oceans. Carnivorous species are also necrophagous, feeding on dead fish, surface pteropods, and crustaceans. Fishes are consumed mainly in the Indian Ocean, pteropods in the Pacific. Thus, as shown by carnivorous Amphtophiura, the rain of dead surface pelagic organisms is one of the most important sources of food for a number of deep-sea bottom-dwelling invertebrates.