987 resultados para Immature Antigen-presenting Cell


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dendritic cells (DC) are important cells at the interface between innate and adaptive immunity. DC have a key role in antigen processing and presentation to T cells. Effector functions of DC related to innate immunity have not been explored extensively. We show that bovine monocyte-derived DC (mDC) express inducible nitric oxide synthase (iNOS) mRNA and protein and produce NO upon triggering with interferon-gamma (IFN-gamma) and heat-killed Listeria monocytogenes (HKLM). An immunocytochemical analysis revealed that a sizeable subset (20-60%) copiously expresses iNOS (iNOShi) upon IFN-gamma/HKLM triggering, whereas the other subset expressed low levels of iNOS (iNOSlo). Monocyte-derived macrophages (mMphi) are more homogeneous with regard to iNOS expression. The number of cells within the iNOSlo mDC subset is considerably larger than the number of dead cells or cells unresponsive to IFN-gamma/HKLM. The large majority of cells translocated p65 to the nucleus upon triggering by IFN-gamma/HKLM. A contamination of mDC with iNOS-expressing mMphi was excluded as follows. (i) Cell surface marker analysis suggested that mDC were relatively homogeneous, and no evidence for a contaminating subset expressing macrophage markers (e.g. high levels of CD14) was obtained. (ii) iNOS expression was stronger in iNOShi mDC than in mMphi. The use of maturation-promoting stimuli revealed only subtle phenotypic differences between immature and mature DC in cattle. Nevertheless, these stimuli promoted development of considerably fewer iNOShi mDC upon triggering with IFN-gamma/HKLM. Immunocytochemical results showed that although a significant proportion of cells expressed iNOS only or TNF only upon triggering with IFN-gamma/HKLM, a significant number of cells expressed both iNOS and TNF, suggesting that TNF and iNOS producing (TIP) DC are present within bovine mDC populations obtained in vitro.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: The antiproliferative effects of pharmacological agents used for androgen ablative therapy in prostate cancer, including goserelin, bicalutamide and cyproterone acetate (Fluka Chemie, Buchs, Switzerland), were tested in vitro. It was determined whether they affected prostate specific antigen mRNA and protein expression independent of growth inhibition. MATERIALS AND METHODS: Goserelin, bicalutamide (AstraZeneca, Zug, Switzerland) and cyproterone acetate were added to prostate specific antigen expressing, androgen dependent LNCaP and androgen independent C4-2 cell line (Urocor, Oklahoma City, Oklahoma) cultures. Proliferation was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assay (Roche, Mannheim, Germany). Prostate specific antigen mRNA expression was assessed by quantitative real-time polymerase chain reaction. Secreted prostate specific antigen protein levels were quantified by microparticle enzyme-immunoassay. RESULTS: Goserelin inhibited cell growth and prostate specific antigen protein secretion in LNCaP and C4-2 cells. Prostate specific antigen mRNA expression was not decreased. Bicalutamide did not affect cell growth or prostate specific antigen mRNA expression in LNCaP or C4-2 cells, although it significantly decreased prostate specific antigen protein secretion in LNCaP and to a lesser extent in C4-2 cells. Cyproterone acetate decreased the growth of C4-2 but not of LNCaP cells. It did not affect prostate specific antigen mRNA or protein expression in either cell line. CONCLUSIONS: Prostate specific antigen expression does not necessarily correlate with cell growth. Without a substantial effect on cell growth bicalutamide lowers prostate specific antigen synthesis, whereas cyproterone acetate decreases cell growth with no effect on prostate specific antigen secretion. Prostate specific antigen expression may be influenced by growth inhibition but also by altered mRNA and protein levels depending on the agent, its concentration and the cell line evaluated. For interpreting clinical trials prostate specific antigen is not necessarily a surrogate end point marker for a treatment effect on prostate cancer cell growth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spindle cell oncocytoma (SCO) is a recently described, rare neoplasm of the anterior pituitary. Clinically and radiologically simulating a non-functioning macroadenoma, its eponymous fusiform cells display a non-epithelial phenotype with conspicuous cytoplasmic accumulation of mitochondria. We report a case of SCO retrospectively identified in a biopsy specimen 16 years after transsphenoidal operation of a 48-year-old woman. Presenting symptoms were adynamia and transient decrease of visual acuity. Neuroimaging showed an isointense, enhancing, sellar-centered mass 1.8 cm in diameter without evidence of invasive growth. No postoperative adjuvant therapy was administered. The patient was left with panhypopituitarism, yet no recurrence was seen during follow-up. Initially diagnosed as a null cell adenoma of oncocytic type, repeat immunohistochemistry showed the characteristic coexpression of S100 protein, vimentin, and epithelial membrane antigen. Oncocytic granula stained intensely with antimitochondrial antibody 113-1, and were negative with the lysosomal marker CD68. Anterior pituitary hormones tested negative, and there was no evidence of neuroendocrine differentiation using antibodies to synaptophysin and chromogranin. Few cells stained for glial fibrillary acidic protein (GFAP). SCO has been proposed to represent a neoplasm of folliculo-stellate cells (FSCs). While the dynamic properties of the latter are incompletely characterized, and indeed no specific marker allows for their identification, overlapping features of SCO with look alikes, in particular pituicytoma, point to FSCs being a potential adult stem cell. The favorable outcome of the present case further argues for SCO to be considered a low-grade neoplasm. Moderate tumor size, lack of invasiveness, and low proliferation rate are likely predictors of benign behavior.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of cancer immunotherapy on the endogenous immune response against tumors is largely unknown. Therefore, we studied immune responses against murine tumors expressing the glycoprotein (GP) and/or nucleoprotein of lymphocytic choriomeningitis virus (LCMV) with or without adoptive T-cell therapy. In nontreated animals, CTLs specific for different epitopes as well as LCMV-GP-specific antibodies contributed to tumor surveillance. Adoptive immunotherapy with monoclonal CTLs specific for LCMV-gp33 impaired the endogenous tumor-specific antibody and CTL response by targeting antigen cross-presenting cells. As a consequence and in contrast to expectations, immunotherapy enhanced tumor growth. Thus, for certain immunogenic tumors, a reduction of tumor-specific B- and T-cell responses and enhanced tumor growth may be an unwanted consequence of adoptive immunotherapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using variants of the murine BW5147 lymphoma cell-line, we have previously identified 3 monoclonal antibodies (MAbs) that discriminate between metastatic and nonmetastatic BW5147-derived T-cell hybridomas and lymphomas, as well as BW5147-unrelated T-lymphomas. These MAbs were reported to recognize an identical membrane-associated sialoglycoprotein, termed "metastatic T-cell hybridoma antigen" (MTH-Ag). Here, we document that the expression pattern of the MTH-Ag on metastatic and nonmetastatic BW5147 variants correlates with that of the P-selectin glycoprotein ligand 1 (PSGL-1), a sialomucin involved in leukocyte recruitment to sites of inflammation. Moreover, the MAbs against the MTH-Ag recognize PSGL-1 when it is transfected in MTH-Ag-negative BW5147 variants, suggesting that the MTH-Ag is PSGL-1. Overexpression of MTH-Ag/PSGL-1 in MTH-Ag-negative BW5147 variants did not affect their in vivo malignancy. Yet, down-regulation of MTH-Ag/PSGL-1 expression on metastatic, MTH-Ag-positive BW5147 variants, using an RNA interference (RNAi) approach, resulted, in a dose-dependent manner, in a significant reduction of liver and spleen colonization and a delay in mortality of the recipient mice upon intravenous inoculation. Collectively, these results demonstrate that, although MTH-Ag/PSGL-1 overexpression alone may not be sufficient for successful dissemination and organ colonization, MTH-Ag/PSGL-1 plays a critical role in hematogenous metastasis of lymphoid cancer cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dendritic cells (DCs) can release hundreds of membrane vesicles, called exovesicles, which are able to activate resting DCs and distribute antigen. Here, we examined the role of mature DC-derived exovesicles in innate and adaptive immunity, in particular their capacity to activate epithelial cells. Our analysis of exovesicle contents showed that exovesicles contain major histocompatibility complex-II, CD40, and CD83 molecules in addition to tumor necrosis factor (TNF) receptors, TNFRI and TNFRII, and are important carriers of TNF-alpha. These exovesicles are rapidly internalized by epithelial cells, inducing the release of cytokines and chemokines, but do not transfer an alloantigen-presenting capacity to epithelial cells. Part of this activation appears to involve the TNF-alpha-mediated pathway, highlighting the key role of DC-derived exovesicles, not only in adaptive immunity, but also in innate immunity by triggering innate immune responses and activating neighboring epithelial cells to release cytokines and chemokines, thereby amplifying the magnitude of the innate immune response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Treatment of metastatic melanoma with tumor reactive T cells (adoptive T cell therapy, ACT) is a promising approach associated with a high clinical response rate. However, further optimization of this treatment modality is required to increase the clinical response after this therapy. ACT in melanoma involves an initial phase (pre-REP) of tumor-infiltrating lymphocyte (TIL) expansion ex vivo from tumor isolates followed by a second phase, “rapid expansion protocol” (REP) generating the billions of cells used as the TIL infusion product. The main question addressed in this thesis was how the currently used REP affected the responsiveness of the CD8+ T cells to defined melanoma antigens. We hypothesized that the REP drives the TIL to further differentiate and become hyporesponsive to antigen restimulation, therefore, proper cytokine treatment or other ways to expand TIL is required to improve upon this outcome. We evaluated the response of CD8+ TIL to melanoma antigen restimulation using MART-1 peptide-pulsed mature DC in vitro. Post-REP TILs were mostly hypo-responsive with poor proliferation and higher apoptosis. Phenotypic analysis revealed that the expression of CD28 was significantly reduced in post-REP TILs. By sorting experiment and microarray analysis, we confirmed that the few CD28+ post-REP TILs had superior survival capacity and proliferated after restimulation. We then went on to investigate methods to maintain CD28 expression during the REP and improve TIL responsiveness. Firstly, IL-15 and IL-21 were found to synergize in maintaining TIL CD28 expression and antigenic responsiveness during REP. Secondly, we found IL-15 was superior as compared to IL-2 in supporting the long-term expansion of antigen-specific CD8+ TIL after restimulation. These results suggest that current expansion protocols used for adoptive T-cell therapy in melanoma yield largely hyporesponsive products containing CD8+ T cells unable to respond in vivo to re-stimulation with antigen. A modification of our current approaches by using IL-15+IL-21 as supporting cytokines in the REP, or/and administration of IL-15 instead of IL-2 after TIL infusion, may enhance the anti-tumor efficacy and long-term persistence of infused T cells in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. METHODS Bone marrow-derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4(+) T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. RESULTS The frequency of PS particle-positive CD11c(+)/CD11b(+) BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4(+) T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. CONCLUSION These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4(+) T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lymph node (LN) stromal cells (LNSCs) form the functional structure of LNs and play an important role in lymphocyte survival and the maintenance of immune tolerance. Despite their broad spectrum of function, little is known about LNSC responses during microbial infection. In this study, we demonstrate that LNSC subsets display distinct kinetics following vaccinia virus infection. In particular, compared with the expansion of other LNSC subsets and the total LN cell population, the expansion of fibroblastic reticular cells (FRCs) was delayed and sustained by noncirculating progenitor cells. Notably, newly generated FRCs were preferentially located in perivascular areas. Viral clearance in reactive LNs preceded the onset of FRC expansion, raising the possibility that viral infection in LNs may have a negative impact on the differentiation of FRCs. We also found that MHC class II expression was upregulated in all LNSC subsets until day 10 postinfection. Genetic ablation of radioresistant stromal cell-mediated Ag presentation resulted in slower contraction of Ag-specific CD4(+) T cells. We propose that activated LNSCs acquire enhanced Ag-presentation capacity, serving as an extrinsic brake system for CD4(+) T cell responses. Disrupted function and homeostasis of LNSCs may contribute to immune deregulation in the context of chronic viral infection, autoimmunity, and graft-versus-host disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly evolving and diversifying pathogen necessitating the development of improved vaccines. Immunity to PRRSV is not well understood although there are data suggesting that virus-specific T cell IFN-γ responses play an important role. We therefore aimed to better characterise the T cell response to genotype 1 (European) PRRSV by utilising a synthetic peptide library spanning the entire proteome and a small cohort of pigs rendered immune to PRRSV-1 Olot/91 by repeated experimental infection. Using an IFN-γ ELISpot assay as a read-out, we were able to identify 9 antigenic regions on 5 of the viral proteins and determine the corresponding responder T cell phenotype. The diversity of the IFN-γ response to PRRSV proteins suggests that antigenic regions are scattered throughout the proteome and no one single antigen dominates the T cell response. To address the identification of well-conserved T cell antigens, we subsequently screened groups of pigs infected with a closely related avirulent PRRSV-1 strain (Lelystad) and a divergent virulent subtype 3 strain (SU1-Bel). Whilst T cell responses from both groups were observed against many of the antigens identified in the first study, animals infected with the SU1-Bel strain showed the greatest response against peptides representing the non-structural protein 5. The proteome-wide peptide library screening method used here, as well as the antigens identified, warrant further evaluation in the context of next generation vaccine development.