919 resultados para Image-based mesh generation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time required to image large samples is an important limiting factor in SPM-based systems. In multiprobe setups, especially when working with biological samples, this drawback can make impossible to conduct certain experiments. In this work, we present a feedfordward controller based on bang-bang and adaptive controls. The controls are based in the difference between the maximum speeds that can be used for imaging depending on the flatness of the sample zone. Topographic images of Escherichia coli bacteria samples were acquired using the implemented controllers. Results show that to go faster in the flat zones, rather than using a constant scanning speed for the whole image, speeds up the imaging process of large samples by up to a 4x factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today's communication networks consist of numerous interdependent network components. To manage these networks and to ensure their reliable and efficient operation to meet the increasing customer usability demands, extensive network management tools are required from the service provider. The goal of this study was to adapt the Next Generation Network (NGN) providing VoIP services within a performance oriented network management system. This study focuses only on NGN network and the project was implemented as an assignment of the Network Operations Center of Elisa Corporation. The theoretical part of this study introduces the network environment of the Elisa NGN platform: its components and used signalling protocols as well as other exploitable communication protocols. In addition, the Simple Network Management Protocol (SNMP) is closely examined since it is commonly used as the basis of IP (Internet Protocol) network management. Also some primary applications enabled by the NGN technology are introduced. The empirical part of this study contains a short overview of the implemented network performance management system and its properties. The most crucial monitored MIB modules, SNMP parameters and implemented performance measurements are described. The trap topology and the role of the traps for management of the NGN platform are considered and finally, the conclusion based on the several disquisitions is made supported with suggestions for future improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The economical competitiveness of various power plant alternatives is compared. The comparison comprises merely electricity producing power plants. Combined heat and power (CHP) producing power will cover part of the future power deficit in Finland, but also condensing power plants for base load production will be needed. The following types of power plants are studied: nuclear power plant, combined cycle gas turbine plant, coal-fired condensing power plant, peat-fired condensing power plant, wood-fired condensing power plant and wind power plant. The calculations are carried out by using the annuity method with a real interest rate of 5 % per annum and with a fixed price level as of January 2008. With the annual peak load utilization time of 8000 hours (corresponding to a load factor of 91,3 %) the production costs would be for nuclear electricity 35,0 €/MWh, for gas based electricity 59,2 €/MWh and for coal based electricity 64,4 €/MWh, when using a price of 23 €/tonCO2 for the carbon dioxide emission trading. Without emission trading the production cost of gas electricity is 51,2 €/MWh and that of coal electricity 45,7 €/MWh and nuclear remains the same (35,0 €/MWh) In order to study the impact of changes in the input data, a sensitivity analysis has been carried out. It reveals that the advantage of the nuclear power is quite clear. E.g. the nuclear electricity is rather insensitive to the changes of nuclear fuel price, whereas for natural gas alternative the rising trend of gas price causes the greatest risk. Furthermore, increase of emission trading price improves the competitiveness of the nuclear alternative. The competitiveness and payback of the nuclear power investment is studied also as such by using various electricity market prices for determining the revenues generated by the investment. The profitability of the investment is excellent, if the market price of electricity is 50 €/MWh or more.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following their detection and seizure by police and border guard authorities, false identity and travel documents are usually scanned, producing digital images. This research investigates the potential of these images to classify false identity documents, highlight links between documents produced by a same modus operandi or same source, and thus support forensic intelligence efforts. Inspired by previous research work about digital images of Ecstasy tablets, a systematic and complete method has been developed to acquire, collect, process and compare images of false identity documents. This first part of the article highlights the critical steps of the method and the development of a prototype that processes regions of interest extracted from images. Acquisition conditions have been fine-tuned in order to optimise reproducibility and comparability of images. Different filters and comparison metrics have been evaluated and the performance of the method has been assessed using two calibration and validation sets of documents, made up of 101 Italian driving licenses and 96 Portuguese passports seized in Switzerland, among which some were known to come from common sources. Results indicate that the use of Hue and Edge filters or their combination to extract profiles from images, and then the comparison of profiles with a Canberra distance-based metric provides the most accurate classification of documents. The method appears also to be quick, efficient and inexpensive. It can be easily operated from remote locations and shared amongst different organisations, which makes it very convenient for future operational applications. The method could serve as a first fast triage method that may help target more resource-intensive profiling methods (based on a visual, physical or chemical examination of documents for instance). Its contribution to forensic intelligence and its application to several sets of false identity documents seized by police and border guards will be developed in a forthcoming article (part II).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In fetal brain MRI, most of the high-resolution reconstruction algorithms rely on brain segmentation as a preprocessing step. Manual brain segmentation is however highly time-consuming and therefore not a realistic solution. In this work, we assess on a large dataset the performance of Multiple Atlas Fusion (MAF) strategies to automatically address this problem. Firstly, we show that MAF significantly increase the accuracy of brain segmentation as regards single-atlas strategy. Secondly, we show that MAF compares favorably with the most recent approach (Dice above 0.90). Finally, we show that MAF could in turn provide an enhancement in terms of reconstruction quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study design: A retrospective study of image guided cervical implant placement precision. Objective: To describe a simple and precise classification of cervical critical screw placement. Summary of Background Data: "Critical" screw placement is defined as implant insertion into a bone corridor which is surrounded circumferentially by neurovascular structures. While the use of image guidance has improved accuracy, there is currently no classification which provides sufficient precision to assess the navigation success of critical cervical screw placement. Methods: Based on postoperative clinical evaluation and CT imaging, the orthogonal view evaluation method (OVEM) is used to classify screw accuracy into grade I (no cortical breach), grade la (screw thread cortical breach), grade II (internal diameter cortical breach) and grade III (major cortical breach causing neural or vascular injury). Grades II and III are considered to be navigation failures, after accounting for bone corridor / screw mismatch (minimal diameter of targeted bone corridor being smaller than an outer screw diameter). Results: A total of 276 screws from 91 patients were classified into grade I (64.9%), grade la (18.1%), and grade II (17.0%). No grade III screw was observed. The overall rate of navigation failure was 13%. Multiple logistic regression indicated that navigational failure was significantly associated with the level of instrumentation and the navigation system used. Navigational failure was rare (1.6%) when the margin around the screw in the bone corridor was larger than 1.5 mm. Conclusions: OVEM evaluation appears to be a useful tool to assess the precision of critical screw placement in the cervical spine. The OVEM validity and reliability need to be addressed. Further correlation with clinical outcomes will be addressed in future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forensic intelligence has recently gathered increasing attention as a potential expansion of forensic science that may contribute in a wider policing and security context. Whilst the new avenue is certainly promising, relatively few attempts to incorporate models, methods and techniques into practical projects are reported. This work reports a practical application of a generalised and transversal framework for developing forensic intelligence processes referred to here as the Transversal model adapted from previous work. Visual features present in the images of four datasets of false identity documents were systematically profiled and compared using image processing for the detection of a series of modus operandi (M.O.) actions. The nature of these series and their relation to the notion of common source was evaluated with respect to alternative known information and inferences drawn regarding respective crime systems. 439 documents seized by police and border guard authorities across 10 jurisdictions in Switzerland with known and unknown source level links formed the datasets for this study. Training sets were developed based on both known source level data, and visually supported relationships. Performance was evaluated through the use of intra-variability and inter-variability scores drawn from over 48,000 comparisons. The optimised method exhibited significant sensitivity combined with strong specificity and demonstrates its ability to support forensic intelligence efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Objective: To evaluate three-dimensional translational setup errors and residual errors in image-guided radiosurgery, comparing frameless and frame-based techniques, using an anthropomorphic phantom. Materials and Methods: We initially used specific phantoms for the calibration and quality control of the image-guided system. For the hidden target test, we used an Alderson Radiation Therapy (ART)-210 anthropomorphic head phantom, into which we inserted four 5mm metal balls to simulate target treatment volumes. Computed tomography images were the taken with the head phantom properly positioned for frameless and frame-based radiosurgery. Results: For the frameless technique, the mean error magnitude was 0.22 ± 0.04 mm for setup errors and 0.14 ± 0.02 mm for residual errors, the combined uncertainty being 0.28 mm and 0.16 mm, respectively. For the frame-based technique, the mean error magnitude was 0.73 ± 0.14 mm for setup errors and 0.31 ± 0.04 mm for residual errors, the combined uncertainty being 1.15 mm and 0.63 mm, respectively. Conclusion: The mean values, standard deviations, and combined uncertainties showed no evidence of a significant differences between the two techniques when the head phantom ART-210 was used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of the regional level in research has risen in the last few decades and a vast literature in the fields of, for instance, evolutionary and institutional economics, network theories, innovations and learning systems, as well as sociology, has focused on regional level questions. Recently the policy makers and regional actors have also began to pay increasing attention to the knowledge economy and its needs, in general, and the connectivity and support structures of regional clusters in particular. Nowadays knowledge is generally considered as the most important source of competitive advantage, but even the most specialised forms of knowledge are becoming a short-lived resource for example due to the accelerating pace of technological change. This emphasizes the need of foresight activities in national, regional and organizational levels and the integration of foresight and innovation activities. In regional setting this development sets great challenges especially in those regions having no university and thus usually very limited resources for research activities. Also the research problem of this dissertation is related to the need to better incorporate the information produced by foresight process to facilitate and to be used in regional practice-based innovation processes. This dissertation is a constructive case study the case being Lahti region and a network facilitating innovation policy adopted in that region. Dissertation consists of a summary and five articles and during the research process a construct or a conceptual model for solving this real life problem has been developed. It is also being implemented as part of the network facilitating innovation policy in the Lahti region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates performance of recent feature-based matching techniques when applied to registration of underwater images. Matching methods are tested versus different contrast enhancing pre-processing of images. As a result of the performed experiments for various dominating in images underwater artifacts and present deformation, the outperforming preprocessing, detection and description methods are proposed