1000 resultados para Imágenes visuales
Resumo:
La relación entre la ingeniería y la medicina cada vez se está haciendo más estrecha, y debido a esto se ha creado una nueva disciplina, la bioingeniería, ámbito en el que se centra el proyecto. Este ámbito cobra gran interés debido al rápido desarrollo de nuevas tecnologías que en particular permiten, facilitan y mejoran la obtención de diagnósticos médicos respecto de los métodos tradicionales. Dentro de la bioingeniería, el campo que está teniendo mayor desarrollo es el de la imagen médica, gracias al cual se pueden obtener imágenes del interior del cuerpo humano con métodos no invasivos y sin necesidad de recurrir a la cirugía. Mediante métodos como la resonancia magnética, rayos X, medicina nuclear o ultrasonidos, se pueden obtener imágenes del cuerpo humano para realizar diagnósticos. Para que esas imágenes puedan ser utilizadas con ese fin hay que realizar un correcto tratamiento de éstas mediante técnicas de procesado digital. En ése ámbito del procesado digital de las imágenes médicas es en el que se ha realizado este proyecto. Gracias al desarrollo del tratamiento digital de imágenes con métodos de extracción de información, mejora de la visualización o resaltado de rasgos de interés de las imágenes, se puede facilitar y mejorar el diagnóstico de los especialistas. Por todo esto en una época en la que se quieren automatizar todos los procesos para mejorar la eficacia del trabajo realizado, el automatizar el procesado de las imágenes para extraer información con mayor facilidad, es muy útil. Actualmente una de las herramientas más potentes en el tratamiento de imágenes médicas es Matlab, gracias a su toolbox de procesado de imágenes. Por ello se eligió este software para el desarrollo de la parte práctica de este proyecto, su potencia y versatilidad simplifican la implementación de algoritmos. Este proyecto se estructura en dos partes. En la primera se realiza una descripción general de las diferentes modalidades de obtención de imágenes médicas y se explican los diferentes usos de cada método, dependiendo del campo de aplicación. Posteriormente se hace una descripción de las técnicas más importantes de procesado de imagen digital que han sido utilizadas en el proyecto. En la segunda parte se desarrollan cuatro aplicaciones en Matlab para ejemplificar el desarrollo de algoritmos de procesado de imágenes médicas. Dichas implementaciones demuestran la aplicación y utilidad de los conceptos explicados anteriormente en la parte teórica, como la segmentación y operaciones de filtrado espacial de la imagen, así como otros conceptos específicos. Las aplicaciones ejemplo desarrolladas han sido: obtención del porcentaje de metástasis de un tejido, diagnóstico de las deformidades de la columna vertebral, obtención de la MTF de una cámara de rayos gamma y medida del área de un fibroadenoma de una ecografía de mama. Por último, para cada una de las aplicaciones se detallará su utilidad en el campo de la imagen médica, los resultados obtenidos y su implementación en una interfaz gráfica para facilitar su uso. ABSTRACT. The relationship between medicine and engineering is becoming closer than ever giving birth to a recently appeared science field: bioengineering. This project is focused on this subject. This recent field is becoming more and more important due to the fast development of new technologies that provide tools to improve disease diagnosis, with regard to traditional procedures. In bioengineering the fastest growing field is medical imaging, in which we can obtain images of the inside of the human body without need of surgery. Nowadays by means of the medical modalities of magnetic resonance, X ray, nuclear medicine or ultrasound, we can obtain images to make a more accurate diagnosis. For those images to be useful within the medical field, they should be processed properly with some digital image processing techniques. It is in this field of digital medical image processing where this project is developed. Thanks to the development of digital image processing providing methods for data collection, improved visualization or data highlighting, diagnosis can be eased and facilitated. In an age where automation of processes is much sought, automated digital image processing to ease data collection is extremely useful. One of the most powerful image processing tools is Matlab, together with its image processing toolbox. That is the reason why that software was chosen to develop the practical algorithms in this project. This final project is divided into two main parts. Firstly, the different modalities for obtaining medical images will be described. The different usages of each method according to the application will also be specified. Afterwards we will give a brief description of the most important image processing tools that have been used in the project. Secondly, four algorithms in Matlab are implemented, to provide practical examples of medical image processing algorithms. This implementation shows the usefulness of the concepts previously explained in the first part, such as: segmentation or spatial filtering. The particular applications examples that have been developed are: calculation of the metastasis percentage of a tissue, diagnosis of spinal deformity, approximation to the MTF of a gamma camera, and measurement of the area of a fibroadenoma in an ultrasound image. Finally, for each of the applications developed, we will detail its usefulness within the medical field, the results obtained, and its implementation in a graphical user interface to ensure ease of use.
Resumo:
Ampliación de software dedicado al análisis de imágenes mediante la introducción de nuevas opciones en el procesamiento de video digital, mejoras en la interacción con el usuario. Para ello se ha estudiado el funcionamiento de la aplicación, integrando el lenguaje Python como herramienta de gestión y ejecución de la aplicación. En esta parte de la aplicación se ha integrado: - Traducción de la UI a una versión castellana. - Modificación y eliminación de cualquier filtro añadido para el procesamiento de video, no únicamente el último. - Descripciones de puntero y en la barra de estado de elementos de la aplicación. - Iconos en la barra de herramientas de los filtros añadidos más importantes. Por la otra parte, la del tratamiento digital de video, Avisynth se dispone como el eje de estudio, el cuál ejecuta sobre lenguaje de bajo nivel (C++) las operaciones pertinentes a través de librerías de enlace dinámico o *.dll. Las nuevas funcionalidades son: Convolución matricial, filtro de media adaptativa, DCT, ajustes de video generales, en formato RGB o YUV, rotaciones, cambios de perspectiva y filtrado en frecuencia. ABSTRACT. Improvement about a digital image processing software, creating new options in digital video processing or the user interaction. For this porpuse, we have integrated the application language,Python, as the tool to the application management and execution. In this part of the application has been integrated: - Translation of the UI: Spanish version. - Modifying and removing any added filter for video processing, not just the last. - Descriptions for the pointer and the status bar of the application. - New icons on the toolbar of the most important filters added. On the other hand, Avisynth was used tool for the digital video processing, which runs on low-level language (C ++) for a quickly and to improve the video operations. The new introduced filters are: Matrix Convolution, adaptive median filter, DCT, general video settings on RGB or YUV format, rotations, changes in perspective and frequency filtering.
Resumo:
Esta tesis trata sobre métodos de corrección que compensan la variación de las condiciones de iluminación en aplicaciones de imagen y video a color. Estas variaciones hacen que a menudo fallen aquellos algoritmos de visión artificial que utilizan características de color para describir los objetos. Se formulan tres preguntas de investigación que definen el marco de trabajo de esta tesis. La primera cuestión aborda las similitudes que se dan entre las imágenes de superficies adyacentes en relación a su comportamiento fotométrico. En base al análisis del modelo de formación de imágenes en situaciones dinámicas, esta tesis propone un modelo capaz de predecir las variaciones de color de la región de una determinada imagen a partir de las variaciones de las regiones colindantes. Dicho modelo se denomina Quotient Relational Model of Regions. Este modelo es válido cuando: las fuentes de luz iluminan todas las superficies incluídas en él; estas superficies están próximas entre sí y tienen orientaciones similares; y cuando son en su mayoría lambertianas. Bajo ciertas circunstancias, la respuesta fotométrica de una región se puede relacionar con el resto mediante una combinación lineal. No se ha podido encontrar en la literatura científica ningún trabajo previo que proponga este tipo de modelo relacional. La segunda cuestión va un paso más allá y se pregunta si estas similitudes se pueden utilizar para corregir variaciones fotométricas desconocidas en una región también desconocida, a partir de regiones conocidas adyacentes. Para ello, se propone un método llamado Linear Correction Mapping capaz de dar una respuesta afirmativa a esta cuestión bajo las circunstancias caracterizadas previamente. Para calcular los parámetros del modelo se requiere una etapa de entrenamiento previo. El método, que inicialmente funciona para una sola cámara, se amplía para funcionar en arquitecturas con varias cámaras sin solape entre sus campos visuales. Para ello, tan solo se necesitan varias muestras de imágenes del mismo objeto capturadas por todas las cámaras. Además, este método tiene en cuenta tanto las variaciones de iluminación, como los cambios en los parámetros de exposición de las cámaras. Todos los métodos de corrección de imagen fallan cuando la imagen del objeto que tiene que ser corregido está sobreexpuesta o cuando su relación señal a ruido es muy baja. Así, la tercera cuestión se refiere a si se puede establecer un proceso de control de la adquisición que permita obtener una exposición óptima cuando las condiciones de iluminación no están controladas. De este modo, se propone un método denominado Camera Exposure Control capaz de mantener una exposición adecuada siempre y cuando las variaciones de iluminación puedan recogerse dentro del margen dinámico de la cámara. Los métodos propuestos se evaluaron individualmente. La metodología llevada a cabo en los experimentos consistió en, primero, seleccionar algunos escenarios que cubrieran situaciones representativas donde los métodos fueran válidos teóricamente. El Linear Correction Mapping fue validado en tres aplicaciones de re-identificación de objetos (vehículos, caras y personas) que utilizaban como caracterísiticas la distribución de color de éstos. Por otra parte, el Camera Exposure Control se probó en un parking al aire libre. Además de esto, se definieron varios indicadores que permitieron comparar objetivamente los resultados de los métodos propuestos con otros métodos relevantes de corrección y auto exposición referidos en el estado del arte. Los resultados de la evaluación demostraron que los métodos propuestos mejoran los métodos comparados en la mayoría de las situaciones. Basándose en los resultados obtenidos, se puede decir que las respuestas a las preguntas de investigación planteadas son afirmativas, aunque en circunstancias limitadas. Esto quiere decir que, las hipótesis planteadas respecto a la predicción, la corrección basada en ésta y la auto exposición, son factibles en aquellas situaciones identificadas a lo largo de la tesis pero que, sin embargo, no se puede garantizar que se cumplan de manera general. Por otra parte, se señalan como trabajo de investigación futuro algunas cuestiones nuevas y retos científicos que aparecen a partir del trabajo presentado en esta tesis. ABSTRACT This thesis discusses the correction methods used to compensate the variation of lighting conditions in colour image and video applications. These variations are such that Computer Vision algorithms that use colour features to describe objects mostly fail. Three research questions are formulated that define the framework of the thesis. The first question addresses the similarities of the photometric behaviour between images of dissimilar adjacent surfaces. Based on the analysis of the image formation model in dynamic situations, this thesis proposes a model that predicts the colour variations of the region of an image from the variations of the surrounded regions. This proposed model is called the Quotient Relational Model of Regions. This model is valid when the light sources illuminate all of the surfaces included in the model; these surfaces are placed close each other, have similar orientations, and are primarily Lambertian. Under certain circumstances, a linear combination is established between the photometric responses of the regions. Previous work that proposed such a relational model was not found in the scientific literature. The second question examines whether those similarities could be used to correct the unknown photometric variations in an unknown region from the known adjacent regions. A method is proposed, called Linear Correction Mapping, which is capable of providing an affirmative answer under the circumstances previously characterised. A training stage is required to determine the parameters of the model. The method for single camera scenarios is extended to cover non-overlapping multi-camera architectures. To this extent, only several image samples of the same object acquired by all of the cameras are required. Furthermore, both the light variations and the changes in the camera exposure settings are covered by correction mapping. Every image correction method is unsuccessful when the image of the object to be corrected is overexposed or the signal-to-noise ratio is very low. Thus, the third question refers to the control of the acquisition process to obtain an optimal exposure in uncontrolled light conditions. A Camera Exposure Control method is proposed that is capable of holding a suitable exposure provided that the light variations can be collected within the dynamic range of the camera. Each one of the proposed methods was evaluated individually. The methodology of the experiments consisted of first selecting some scenarios that cover the representative situations for which the methods are theoretically valid. Linear Correction Mapping was validated using three object re-identification applications (vehicles, faces and persons) based on the object colour distributions. Camera Exposure Control was proved in an outdoor parking scenario. In addition, several performance indicators were defined to objectively compare the results with other relevant state of the art correction and auto-exposure methods. The results of the evaluation demonstrated that the proposed methods outperform the compared ones in the most situations. Based on the obtained results, the answers to the above-described research questions are affirmative in limited circumstances, that is, the hypothesis of the forecasting, the correction based on it, and the auto exposure are feasible in the situations identified in the thesis, although they cannot be guaranteed in general. Furthermore, the presented work raises new questions and scientific challenges, which are highlighted as future research work.
Resumo:
La introducción de las cirugías de mínima invasión en rutina clínica ha provocado la incorporación de los sistemas de vídeo dentro del quirófano. Así, estas técnicas proporcionan al cirujano imágenes que antes solo podían ser vistas mediante cirugía abierta. Los vídeos obtenidos en las intervenciones son almacenados en repositorios. El uso posterior de estos vídeos se ve limitado generalmente a su reproducción, debido a las dificultades de clasificación y gestión. La información que contienen estos repositorios puede ser explotada, reutilizando el conocimiento obtenido en cirugías similares. En este artículo de investigación se presenta el diseño de un módulo de gestión de conocimiento (MGC) para un repositorio de vídeos de cirugía de mínima invasión (CMI). El objetivo del módulo es gestionar y reutilizar la información contenida en el repositorio de vídeos laparoscópicos, para que puedan ser utilizadas con las experiencias previas en entornos de formación de nuevos cirujanos. Para este fin, se han implementado técnicas de recuperación de imagen y vídeo basadas en sus contenidos visuales (CBIR y CBVR). El MGC permite la recuperación de imágenes/vídeos, proporcionando información sobre la tarea que se está realizando en la escena quirúrgica. Los resultados obtenidos en este trabajo muestran la posibilidad de recuperar vídeos de CMI, a partir del instrumental presente en la escena quirúrgica.
Resumo:
La importancia de la Biomasa a nivel mundial, ha llevado a que más de 130 países celebren el protocolo de Kioto sobre el cambio climático dictaminando como objetivo la reducción de las emisiones de seis gases de efecto invernadero y tres gases industriales fluorados, así como la incorporación de la fijación del CO2 como un objetivo dentro de los criterios de gestión de bosques. Entre las metodologías no destructivas para estimación de biomasa, aquí desarrolladas se describen tres técnicas que varios autores han propuesto para calcular los valores de biomasa y carbono, tal como el uso de ecuaciones alométricas por medio de la medición de variables dasométricas como el DAP, la aplicación de la teoría de huecos (v.g. DHP, TRAC), y la obtención de biomasa mediante información radar. Las imágenes radar proporcionan una clara ventaja al poder ser adquiridas en cualquier momento del día e independientemente de las condiciones climatológicas. Se han adquirido dos imágenes de sensores diferentes, tal como ALOSPALSAR que trabaja en la banda L y RADARSAT-2 que trabaja en la banda C, se aplica la metodología descrita por Saatchi et al. (2007), desarrollando los algoritmos semiempíricos propuestos para la estimación de biomasa del fuste (Ws) y biomasa de la copa (Wc), obteniendo los coeficientes a partir de información adquirida en campo. ABSTRACT The importance of biomass worldwide has led to more than 130 countries to celebrate the Kyoto Protocol, aimed at reducing emissions of six greenhouse gases and three fluorinated industrial gases, and the incorporation of the fixation of CO2 as an objective within forest management criteria. Among the non-destructive methods for estimating biomass, three techniques were developed. These have been described by some authors, as the use of allometric equations by measuring forest variables such as the DAP, the application of the Gap Theory (e.g. DHP, TRAC), as well as deriving biomass by radar information. The radar images provide a clear advantage since they can be gathered at any time of the day regardless of the weather conditions. For this purpose, two radar products have acquired from different sensors, such as ALOSPALSAR operating on L frequency band and RADARSAT-2 operating on C frequency band. The methodology applied in this work is described in Saatchi et al. (2007), that develop semiempirical algorithms for estimating stem biomass (Ws) and crown biomass (Wc). The corresponding coefficients are determined by means of regression procedures using field information derived from allometric and radiation measurements.
Resumo:
El presente artículo pretende describir el desarrollo de una nueva metodología no invasiva de documentación digital de petroglifos y pinturas rupestres pertenecientes al paleolítico, a través de técnicas y herramientas del tratamiento digital de imágenes para optimizar materiales y tiempos en la obtención de información gráfica, representativa y de precisión. Abstract: This article aims to describe the development of a new non-invasive methodology, through techniques and tools of digital image processing to optimize materials and time in obtaining graphical representative and accurate information from petroglyphs and rock paintings belonging to Paleolithic.
Resumo:
Nuevas tecnologías aplicadas a la arqueología
Resumo:
El presente Proyecto de Fin de Carrera viene motivado por el conocimiento de la existencia de fenómenos erosivos en la zona de Orgaz - Los Yébenes. El objetivo es el estudio de la distribución de procesos erosivos en el área citada y la relación de las zonas en que estos se producen, con las propiedades analíticas del suelo. La pérdida de suelo por erosión inducida por el hombre, supera a la erosión natural en varios órdenes de magnitud, por lo que cabe considerarla como un grave problema ambiental que propicia la pérdida de fertilidad. Esto es debido a que en los ecosistemas agrarios, sobre todo en cultivos de secano,se han aplicado manejos que han acelerado las tasas de erosión naturales. En los cultivos de secano más extendidos, se ha eliminado toda la cubierta vegetal, se ha compactado el suelo y esquilmado la materia orgánica. Como consecuencia de estos manejos poco respetuosos con el suelo, las tasas de erosión son mayores a las tasas de formación y constituyen un poderoso factor de desertificación. La respuesta erosiva de un determinado ambiente o uso del suelo suele ser bastante diferente según la época del año en la que se produzcan las lluvias,su intensidad y duración, el estado de la vegetación, el tiempo en el que el suelo permanece desnudo tras el levantamiento de la cosecha, etc.… Del uso y gestión que se haga del suelo y de la cubierta vegetal dependerá que, con el tiempo, la erosión potencial no se convierta en erosión actual.
Resumo:
El objetivo de este proyecto es evaluar la mejora de rendimiento que aporta la paralelización de algoritmos de procesamiento de imágenes, para su ejecución en una tarjeta gráfica. Para ello, una vez seleccionados los algoritmos a estudio, fueron desarrollados en lenguaje C++ bajo el paradigma secuencial. A continuación, tomando como base estas implementaciones, se paralelizaron siguiendo las directivas de la tecnología CUDA (Compute Unified Device Architecture) desarrollada por NVIDIA. Posteriormente, se desarrolló un interfaz gráfico de usuario en Visual C#, para una utilización más sencilla de la herramienta. Por último, se midió el rendimiento de cada uno de los algoritmos, en términos de tiempo de ejecución paralela y speedup, mediante el procesamiento de una serie de imágenes de distintos tamaños.---ABSTRACT---The aim of this Project is to evaluate the performance improvement provided by the parallelization of image processing algorithms, which will be executed on a graphics processing unit. In order to do this, once the algorithms to study were selected, each of them was developed in C++ under sequential paradigm. Then, based on these implementations, these algorithms were implemented using the compute unified device architecture (CUDA) programming model provided by NVIDIA. After that, a graphical user interface (GUI) was developed to increase application’s usability. Finally, performance of each algorithm was measured in terms of parallel execution time and speedup by processing a set of images of different sizes.
Resumo:
Las nuevas tendencias de compartir archivos multimedia a través de redes abiertas, demanda el uso de mejores técnicas de encriptación que garanticen la integridad, disponibilidad y confidencialidad, manteniendo y/o mejorando la eficiencia del proceso de cifrado sobre estos archivos. Hoy en día es frecuente la transferencia de imágenes a través de medios tecnológicos, siendo necesario la actualización de las técnicas de encriptación existentes y mejor aún, la búsqueda de nuevas alternativas. Actualmente los algoritmos criptográficos clásicos son altamente conocidos en medio de la sociedad informática lo que provoca mayor vulnerabilidad, sin contar los altos tiempos de procesamiento al momento de ser utilizados, elevando la probabilidad de ser descifrados y minimizando la disponibilidad inmediata de los recursos. Para disminuir estas probabilidades, el uso de la teoría de caos surge como una buena opción para ser aplicada en un algoritmo que tome partida del comportamiento caótico de los sistemas dinámicos, y aproveche las propiedades de los mapas logísticos para elevar el nivel de robustez en el cifrado. Es por eso que este trabajo propone la creación de un sistema criptográfico basado sobre una arquitectura dividida en dos etapas de confusión y difusión. Cada una de ellas utiliza una ecuación logística para generar números pseudoaleatorios que permitan desordenar la posición del píxel y cambiar su intensidad en la escala de grises. Este proceso iterativo es determinado por la cantidad total de píxeles de una imagen. Finalmente, toda la lógica de cifrado es ejecutada sobre la tecnología CUDA que permite el procesamiento en paralelo. Como aporte sustancial, se propone una nueva técnica de encriptación vanguardista de alta sensibilidad ante ruidos externos manteniendo no solo la confidencialidad de la imagen, sino también la disponibilidad y la eficiencia en los tiempos de proceso.---ABSTRACT---New trends to share multimedia files over open networks, demand the best use of encryption techniques to ensure the integrity, availability and confidentiality, keeping and/or improving the efficiency of the encryption process on these files. Today it is common to transfer pictures through technological networks, thus, it is necessary to update existing techniques encryption, and even better, the searching of new alternatives. Nowadays, classic cryptographic algorithms are highly known in the midst of the information society which not only causes greater vulnerability, but high processing times when this algorithms are used. It raise the probability of being deciphered and minimizes the immediate availability of resources. To reduce these odds, the use of chaos theory emerged as a good option to be applied on an algorithm that takes advantage of chaotic behavior of dynamic systems, and take logistic maps’ properties to raise the level of robustness in the encryption. That is why this paper proposes the creation of a cryptographic system based on an architecture divided into two stages: confusion and diffusion. Each stage uses a logistic equation to generate pseudorandom numbers that allow mess pixel position and change their intensity in grayscale. This iterative process is determined by the total number of pixels of an image. Finally, the entire encryption logic is executed on the CUDA technology that enables parallel processing. As a substantial contribution, it propose a new encryption technique with high sensitivity on external noise not only keeping the confidentiality of the image, but also the availability and efficiency in processing times.
Resumo:
En este Trabajo de Fin de Grado se diseña, implementa y evalúa un sistema se digitalización de muestras de esputo basado en telefonía móvil e integrable con TuberSpot. Además, se proponen técnicas de procesamiento de imagen para el control de calidad del análisis y se implementa un mecanismo para evaluar la eficiencia de la inteligencia colectiva y la gamificación en este contexto. El sistema de adquisición propuesto utiliza smartphones, adaptadores móvil-microscopio y una aplicación Android. El protocolo de adquisición se ha diseñado conforme a un estudio realizado con personal médico cualificado. El control de calidad se basa en la inserción de bacilos simulados en las imágenes. Para la evaluación de eficiencia de TuberSpot se crea, en colaboración con médicos especialistas, un repositorio de imágenes en las que posición y número de bacilos quedan registrados.
Resumo:
Prefacio: Imágenes de la perspectiva
Resumo:
En el presente documento se presenta una nueva metodología para la caracterización de formaciones de vegetación de ribera y su morfología fluvial asociada. La metodología está basada en la utilización de sensores aerotransportados LiDAR y Cámara Digital multiespectral de gran formato junto a perfiles batimétricos tomados en campo. Este trabajo pone de manifiesto la utilidad de los datos captados por sensores LiDAR y cámaras digitales aerotransportadas en aplicaciones medioambientales.
Resumo:
El análisis de imágenes hiperespectrales permite obtener información con una gran resolución espectral: cientos de bandas repartidas desde el espectro infrarrojo hasta el ultravioleta. El uso de dichas imágenes está teniendo un gran impacto en el campo de la medicina y, en concreto, destaca su utilización en la detección de distintos tipos de cáncer. Dentro de este campo, uno de los principales problemas que existen actualmente es el análisis de dichas imágenes en tiempo real ya que, debido al gran volumen de datos que componen estas imágenes, la capacidad de cómputo requerida es muy elevada. Una de las principales líneas de investigación acerca de la reducción de dicho tiempo de procesado se basa en la idea de repartir su análisis en diversos núcleos trabajando en paralelo. En relación a esta línea de investigación, en el presente trabajo se desarrolla una librería para el lenguaje RVC – CAL – lenguaje que está especialmente pensado para aplicaciones multimedia y que permite realizar la paralelización de una manera intuitiva – donde se recogen las funciones necesarias para implementar el clasificador conocido como Support Vector Machine – SVM. Cabe mencionar que este trabajo complementa el realizado en [1] y [2] donde se desarrollaron las funciones necesarias para implementar una cadena de procesado que utiliza el método unmixing para procesar la imagen hiperespectral. En concreto, este trabajo se encuentra dividido en varias partes. La primera de ellas expone razonadamente los motivos que han llevado a comenzar este Trabajo de Investigación y los objetivos que se pretenden conseguir con él. Tras esto, se hace un amplio estudio del estado del arte actual y, en él, se explican tanto las imágenes hiperespectrales como sus métodos de procesado y, en concreto, se detallará el método que utiliza el clasificador SVM. Una vez expuesta la base teórica, nos centraremos en la explicación del método seguido para convertir una versión en Matlab del clasificador SVM optimizado para analizar imágenes hiperespectrales; un punto importante en este apartado es que se desarrolla la versión secuencial del algoritmo y se asientan las bases para una futura paralelización del clasificador. Tras explicar el método utilizado, se exponen los resultados obtenidos primero comparando ambas versiones y, posteriormente, analizando por etapas la versión adaptada al lenguaje RVC – CAL. Por último, se aportan una serie de conclusiones obtenidas tras analizar las dos versiones del clasificador SVM en cuanto a bondad de resultados y tiempos de procesado y se proponen una serie de posibles líneas de actuación futuras relacionadas con dichos resultados. ABSTRACT. Hyperspectral imaging allows us to collect high resolution spectral information: hundred of bands covering from infrared to ultraviolet spectrum. These images have had strong repercussions in the medical field; in particular, we must highlight its use in cancer detection. In this field, the main problem we have to deal with is the real time analysis, because these images have a great data volume and they require a high computational power. One of the main research lines that deals with this problem is related with the analysis of these images using several cores working at the same time. According to this investigation line, this document describes the development of a RVC – CAL library – this language has been widely used for working with multimedia applications and allows an optimized system parallelization –, which joins all the functions needed to implement the Support Vector Machine – SVM - classifier. This research complements the research conducted in [1] and [2] where the necessary functions to implement the unmixing method to analyze hyperspectral images were developed. The document is divided in several chapters. The first of them introduces the motivation of the Master Thesis and the main objectives to achieve. After that, we study the state of the art of some technologies related with this work, like hyperspectral images, their processing methods and, concretely, the SVM classifier. Once we have exposed the theoretical bases, we will explain the followed methodology to translate a Matlab version of the SVM classifier optimized to process an hyperspectral image to RVC – CAL language; one of the most important issues in this chapter is that a sequential implementation is developed and the bases of a future parallelization of the SVM classifier are set. At this point, we will expose the results obtained in the comparative between versions and then, the results of the different steps that compose the SVM in its RVC – CAL version. Finally, we will extract some conclusions related with algorithm behavior and time processing. In the same way, we propose some future research lines according to the results obtained in this document.
Resumo:
El objetivo general de este trabajo es el correcto funcionamiento de un sistema de reconocimiento facial compuesto de varios módulos, implementados en distintos lenguajes. Uno de dichos módulos está escrito en Python y se encargarí de determinar el género del rostro o rostros que aparecen en una imagen o en un fotograma de una secuencia de vídeo. El otro módulo, escrito en C++, llevará a cabo el reconocimiento de cada una de las partes de la cara (ojos, nariz, boca) y la orientación hacia la que está posicionada (derecha, izquierda). La primera parte de esta memoria corresponde a la reimplementación de todas las partes de un analizador facial, que constituyen el primer módulo antes mencionado. Estas partes son un analizador, compuesto a su vez por un reconocedor (Tracker) y un procesador (Processor), y una clase visor para poder visualizar los resultados. Por un lado, el reconocedor o "Tracker.es el encargado de encontrar la cara y sus partes, que serán pasadas al procesador o Processor, que analizará la cara obtenida por el reconocedor y determinará su género. Este módulo estaba dise~nado completamente en C y OpenCV 1.0, y ha sido reescrito en Python y OpenCV 2.4. Y en la segunda parte, se explica cómo realizar la comunicación entre el primer módulo escrito en Python y el segundo escrito en C++. Además, se analizarán diferentes herramientas para poder ejecutar código C++ desde programas Python. Dichas herramientas son PyBindGen, Cython y Boost. Dependiendo de las necesidades del programador se contará cuál de ellas es más conveniente utilizar en cada caso. Por último, en el apartado de resultados se puede observar el funcionamiento del sistema con la integración de los dos módulos, y cómo se muestran por pantalla los puntos de interés, el género y la orientación del rostro utilizando imágenes tomadas con una cámara web.---ABSTRACT---The main objective of this document is the proper functioning of a facial recognition system composed of two modules, implemented in diferent languages. One of these modules is written in Python, and his purpose is determining the gender of the face or faces in an image or a frame of a video sequence. The other module is written in C ++ and it will perform the recognition of each of the parts of the face (eyes, nose , mouth), and the head pose (right, left).The first part of this document corresponds to the reimplementacion of all components of a facial analyzer , which constitute the first module that I mentioned before. These parts are an analyzer , composed by a tracke) and a processor, and a viewer to display the results. The tracker function is to find and its parts, which will be passed to the processor, which will analyze the face obtained by the tracker. The processor will determine the face's gender. This module was completely written in C and OpenCV 1.0, and it has been rewritten in Python and OpenCV 2.4. And in the second part, it explains how to comunicate two modules, one of them written in Python and the other one written in C++. Furthermore, it talks about some tools to execute C++ code from Python scripts. The tools are PyBindGen, Cython and Boost. It will tell which one of those tools is better to use depend on the situation. Finally, in the results section it is possible to see how the system works with the integration of the two modules, and how the points of interest, the gender an the head pose are displayed on the screen using images taken from a webcam.