997 resultados para Ice formation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Introduction (extrait)] Il existe de nombreuses formations destinées à prévenir la maltraitance envers les personnes âgées. A ce jour, leur efficacité n'est cependant pas prouvée, faute d'évaluation de leur impact sur les pratiques professionnelles. La formation PREMALPA, qui existe depuis 2003, a fait l'objet d'une évaluation en 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conditional heat-sensitive mutation in the cdc14 gene of the fission yeast Schizosaccharomyces pombe results in failure to form a septum. Cells become highly elongated and multinucleate as growth and nuclear division continue in the absence of cell division. This article describes the cloning of the cdc14 gene and the identification of its product, a protein of 240 amino acids, p28cdc14. A null allele of the cdc14 gene shows that the gene is essential for septum formation and completion of the cell-division cycle. Overexpression of the gene product, p28cdc14, causes cell-cycle arrest in late G2 before mitosis. Cells leaking past the block activate p34cdc2 kinase and show condensed chromosomes, but the normal rearrangements of the microtubules and microfilaments that are associated with the transition from interphase to mitosis do not occur. Overexpression of p28cdc14 in mutants, in which the timing of mitosis is altered, suggests that these effects may be mediated upstream of the mitotic inhibitor wee1. These data are consistent with the idea that p28cdc14 may play a role in both the initiation of mitosis and septum formation and, by doing so, be part of the mechanism that coordinates these two cell-cycle events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the analytical modeling of morphogen profiles is based on simplistic scenarios, where the source is abstracted to be point-like and fixed in time, and where only the steady state solution of the morphogen gradient in one dimension is considered. Here we develop a general formalism allowing to model diffusive gradient formation from an arbitrary source. This mathematical framework, based on the Green's function method, applies to various diffusion problems. In this paper, we illustrate our theory with the explicit example of the Bicoid gradient establishment in Drosophila embryos. The gradient formation arises by protein translation from a mRNA distribution followed by morphogen diffusion with linear degradation. We investigate quantitatively the influence of spatial extension and time evolution of the source on the morphogen profile. For different biologically meaningful cases, we obtain explicit analytical expressions for both the steady state and time-dependent 1D problems. We show that extended sources, whether of finite size or normally distributed, give rise to more realistic gradients compared to a single point-source at the origin. Furthermore, the steady state solutions are fully compatible with a decreasing exponential behavior of the profile. We also consider the case of a dynamic source (e.g. bicoid mRNA diffusion) for which a protein profile similar to the ones obtained from static sources can be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether infusion line compliance contributes to irregular drug delivery during vertical displacement of syringe pumps. DESIGN: Five different commercially available infusion lines were studied at infusion rates of 0.5, 1.0, and 1.5 ml/h. Zero drug delivery time was measured after acute line loop formation (70 cm) using an electronic balance. Compliance of each infusion line was calculated using a pressure transducer and measurement of the occlusion release bolus at 300 mmHg occlusion pressure. Finally, the influence of infusion line compliance on drug delivery during acute lowering of the syringe pump was studied using low- and high-compliance infusion lines. RESULTS: Acute line loop formation resulted in zero drug delivery time from 5.1 +/- 1.5 to 44.0 +/- 6.8 s at flow rates of 0.5 ml/h. Increased flow rates significantly reduced loop-induced flow variability. A close correlation was found between zero drug delivery time and calculated infusion line compliance at 0.5 ml/h (linear regression R2 = 0.79). Lowering of the syringe pump 50 cm prolonged zero drug delivery time from 295.8 +/- 20.7 s with the low-compliance tube to 463.3 +/- 24.0 s with the high-compliance infusion line. CONCLUSIONS: Infusion line compliance contributes to irregular drug delivery associated with vertical displacement of syringe pumps. Siphoning of the infusion line during patient care should be avoided, and flow rates of 1 ml/h or higher are recommended. Low-compliance infusion lines are indicated whenever highly short-acting vasoactive drugs at low delivery rates are administered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PIDD (p53-induced protein with a death domain [DD]), together with the bipartite adapter protein RAIDD (receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a DD), is implicated in the activation of pro-caspase-2 in a high molecular weight complex called the PIDDosome during apoptosis induction after DNA damage. To investigate the role of PIDD in cell death initiation, we generated PIDD-deficient mice. Processing of caspase-2 is readily detected in the absence of PIDDosome formation in primary lymphocytes. Although caspase-2 processing is delayed in simian virus 40-immortalized pidd(-/-) mouse embryonic fibroblasts, it still depends on loss of mitochondrial integrity and effector caspase activation. Consistently, apoptosis occurs normally in all cell types analyzed, suggesting alternative biological roles for caspase-2 after DNA damage. Because loss of either PIDD or its adapter molecule RAIDD did not affect subcellular localization, nuclear translocation, or caspase-2 activation in high molecular weight complexes, we suggest that at least one alternative PIDDosome-independent mechanism of caspase-2 activation exists in mammals in response to DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genetic landscape of the European flora and fauna was shaped by the ebb and flow of populations with the shifting ice during Quaternary climate cycles. While this has been well demonstrated for lowland species, less is known about high altitude taxa. Here we analyze the phylogeography of the leaf beetle Oreina elongata from 20 populations across the Alps and Apennines. Three mitochondrial and one nuclear region were sequenced in 64 individuals. Within an mtDNA phylogeny, three of seven subspecies are monophyletic. The species is chemically defended and aposematic, with green and blue forms showing geographic variation and unexpected within-population polymorphism. These warning colors show pronounced east-west geographical structure in distribution, but the phylogeography suggests repeated origin and loss. Basal clades come from the central Alps. Ancestors of other clades probably survived across northern Italy and the northern Adriatic, before separation of eastern, southern and western populations and rapid spread through the western Alps. After reviewing calibrated gene-specific substitution rates in the literature, we use partitioned Bayesian coalescent analysis to date our phylogeography. The major clades diverged long before the last glacial maximum, suggesting that O. elongata persisted many glacial cycles within or at the edges of the Alps and Apennines. When analyzing additional barcoding pairwise distances, we find strong evidence to consider O. elongata as a species complex rather than a single species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In shade-intolerant plants such as Arabidopsis, a reduction in the red/far-red (R/FR) ratio, indicative of competition from other plants, triggers a suite of responses known as the shade avoidance syndrome (SAS). The phytochrome photoreceptors measure the R/FR ratio and control the SAS. The phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) are stabilized in the shade and are required for a full SAS, whereas the related bHLH factor HFR1 (long hypocotyl in FR light) is transcriptionally induced by shade and inhibits this response. Here we show that HFR1 interacts with PIF4 and PIF5 and limits their capacity to induce the expression of shade marker genes and to promote elongation growth. HFR1 directly inhibits these PIFs by forming non-DNA-binding heterodimers with PIF4 and PIF5. Our data indicate that PIF4 and PIF5 promote SAS by directly binding to G-boxes present in the promoter of shade marker genes, but their action is limited later in the shade when HFR1 accumulates and forms non-DNA-binding heterodimers. This negative feedback loop is important to limit the response of plants to shade.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the regeneration of freshwater planarians, polarity and patterning programs play essential roles in determining whether a head or a tail regenerates at anterior or posterior-facing wounds. This decision is made very soon after amputation. The pivotal role of the Wnt/β-catenin and Hh signaling pathways in re-establishing anterior-posterior (AP) polarity has been well documented. However, the mechanisms that control the growth and differentiation of the blastema in accordance with its AP identity are less well understood. Previous studies have described a role of Smed-egfr-3, a planarian epidermal growth factor receptor, in blastema growth and differentiation. Here, we identify Smed-egr-4, a zinc-finger transcription factor belonging to the early growth response gene family, as a putative downstream target of Smed-egfr-3. Smed-egr-4 is mainly expressed in the central nervous system and its silencing inhibits anterior regeneration without affecting the regeneration of posterior regions. Single and combinatorial RNA interference to target different elements of the Wnt/β-catenin pathway, together with expression analysis of brain- and anterior-specific markers, revealed that Smed-egr-4: (1) is expressed in two phases - an early Smed-egfr-3-independent phase and a late Smed-egfr-3-dependent phase; (2) is necessary for the differentiation of the brain primordia in the early stages of regeneration; and (3) that it appears to antagonize the activity of the Wnt/β-catenin pathway to allow head regeneration. These results suggest that a conserved EGFR/egr pathway plays an important role in cell differentiation during planarian regeneration and indicate an association between early brain differentiation and the proper progression of head regeneration.