937 resultados para ISE and ITSE optimization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bibliography: p. 185-187.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

At head of title : Generalized computer program.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Urban growth and change presents numerous challenges for planners and policy makers. Effective and appropriate strategies for managing growth and change must address issues of social, environmental and economic sustainability. Doing so in practical terms is a difficult task given the uncertainty associated with likely growth trends not to mention the uncertainty associated with how social and environmental structures will respond to such change. An optimization based approach is developed for evaluating growth and change based upon spatial restrictions and impact thresholds. The spatial optimization model is integrated with a cellular automata growth simulation process. Application results are presented and discussed with respect to possible growth scenarios in south east Queensland, Australia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A parallel computing environment to support optimization of large-scale engineering systems is designed and implemented on Windows-based personal computer networks, using the master-worker model and the Parallel Virtual Machine (PVM). It is involved in decomposition of a large engineering system into a number of smaller subsystems optimized in parallel on worker nodes and coordination of subsystem optimization results on the master node. The environment consists of six functional modules, i.e. the master control, the optimization model generator, the optimizer, the data manager, the monitor, and the post processor. Object-oriented design of these modules is presented. The environment supports steps from the generation of optimization models to the solution and the visualization on networks of computers. User-friendly graphical interfaces make it easy to define the problem, and monitor and steer the optimization process. It has been verified by an example of a large space truss optimization. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A steady state mathematical model for co-current spray drying was developed for sugar-rich foods with the application of the glass transition temperature concept. Maltodextrin-sucrose solution was used as a sugar-rich food model. The model included mass, heat and momentum balances for a single droplet drying as well as temperature and humidity profile of the drying medium. A log-normal volume distribution of the droplets was generated at the exit of the rotary atomizer. This generation created a certain number of bins to form a system of non-linear first-order differential equations as a function of the axial distance of the drying chamber. The model was used to calculate the changes of droplet diameter, density, temperature, moisture content and velocity in association with the change of air properties along the axial distance. The difference between the outlet air temperature and the glass transition temperature of the final products (AT) was considered as an indicator of stickiness of the particles in spray drying process. The calculated and experimental AT values were close, indicating successful validation of the model. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.