879 resultados para IRON IONS
Resumo:
A series of new ruthenium-iron based derivatives [Ru(eta(5)-Cp)(dppf)Cl] (1), [Ru(eta(5)-Cp)(dppf)Br] (2), [Ru(eta(5)-Cp)(dppf)I] (3) and [Ru(eta(5)-Cp)(dppf)N(3)] (4) were obtained by reactions of [Ru(eta(5)-Cp)(PPh(3))(2)Cl] with 1,1`-bis(diphenylphosphino) ferrocene (dppf) and characterized by IR, NMR ((1)H, (13)C and (31)P), (57)Fe Mossbauer spectroscopy and cyclic voltammetry. Additionally, the compound (3) was structurally characterized by X-ray crystallography, and the results were as follows: orthorhombic, Pbca, a = 18.2458(10), b = 20.9192(11), c = 34.4138(19) a""<<, alpha = beta = gamma = 90A degrees, V = 13135.3(12) a""<<(3) and Z = 16.
Resumo:
Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.
Resumo:
This work reports the structural and spectroscopy characterization of poly(styrene sulfonate) (PSS) films doped with neodymium (Nd) ions. Nd-PSS films were processed using the acid of poly(styrene sulfonate) - H-PSS and neodymium nitrate - Nd(NO(3))(3); the maximum incorporation of Nd ions in the polymeric matrix was equal 19.3%. The absorption in the UV-Vis-NIR spectral region presents typical electronic transitions of Nd 3, ions, with well resolved peaks. The infrared spectra present the transition bands of PSS with characteristic line shape broadening, and the presence of vibrational modes of N-O groups in the range of 1400-720 cm(-1), prove the permanence of Nd(NO(3))(x), with x = 1, 2 and/or 3. in the H-PSS matrix. UV-Vis site selective photoluminescence data indicate that the incorporation of Nd 31 introduces a blue shift in PSS emission (325-800 nm), decreasing the interaction between adjacent PSS lateral groups (aromatic rings). Nd(3+) reabsorption and energy transfer effects between the PSS matrix and Nd(3+) were also observed. The IR emission of Nd-PSS films at 1076 rim ((4)F(3/2) -> (4)I(11/2)) present constant efficiency, independent on Nd(3+) concentration. The Judd-Ofelt theory was employed to analyze radiative properties. The excitation spectra prove the energy transfer between the polymeric matrix and Nd(3+). Complex impedance data was used to probe relaxation processes during the charge transport within the polymeric matrix. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Universal properties of the Coulomb interaction energy apply to all many-electron systems. Bounds on the exchange-correlation energy, in particular, are important for the construction of improved density functionals. Here we investigate one such universal property-the Lieb-Oxford lower bound-for ionic and molecular systems. In recent work [J Chem Phys 127, 054106 (2007)], we observed that for atoms and electron liquids this bound may be substantially tightened. Calculations for a few ions and molecules suggested the same tendency, but were not conclusive due to the small number of systems considered. Here we extend that analysis to many different families of ions and molecules, and find that for these, too, the bound can be empirically tightened by a similar margin as for atoms and electron liquids. Tightening the Lieb-Oxford bound will have consequences for the performance of various approximate exchange-correlation functionals. (C) 2008 Wiley Periodicals Inc.
Resumo:
Bendadaite, ideally Fe(2+)Fe(2)(3+)(AsO(4))(2)(OH)(2 center dot).4H(2)O, is a new member of the arthurite group It was found as a weathering product of arsenopyrite on a single hand specimen from the phosphate pegmatite Bendada. central Portugal (type locality) Co-type locality is the granite pegmatite of La via do Almerindo (Almerindo mine), Linopolis, Divmo das Laranjeiras county, Minas Gerais, Brazil Further localities are the Vein Negra mine, Copiapo province, Chile, mid-East, Bou Azzer district, Morocco, and Para Inferida yard, Fenugu Sibirt mine, Gonnosfanadiga, Medio Campidano Province, Sardinia. Italy Type bendadaite occurs as blackish green to dark brownish tufts (<0 1 mm long) and flattened radiating aggregates. in intimate association with an intermediate member of the scorodite-mansfieldite series It is monoclinic. space group P2(l/c). with a = 10 239(3) angstrom. b = 9 713(2) angstrom, c = 5 552(2) angstrom. beta = 94 11(2)degrees. = 550 7(2) angstrom(3). Z = 2 Electron-microprobe analysis yielded (wt %). CaO 0 04, MnO 0 03. CuO 006, ZnO 004. Fe(2)O(3) (total) 43 92, Al(2)O(3) 115. SnO(2) 0 10, As(2)O(5) 43 27. P(2)O(5) 1 86, SO(3) 0.03 The empirical formula is (Fe(0 52)(2+)Fe(0 32)(3+)rectangle(0 16))(Sigma 1 00)(Fe(1 89)(3+)Al(0 11))(Sigma 2 00)(As(1 87)P(0 13))(Sigma 2 00)O(8)(OH)(2 00) 4H(2)O based. CM 2(As,P) and assuming ideal 80, 2(OH), 4H2O and complete occupancy of the ferric on site by Fe(3+) and Al Optically, bendadaite is biaxial, positive, 2V(est) = 85+/-4 degrees, 2V(eale) = 88 degrees, with alpha 1 734(3). 13 1 759(3), 7 1 787(4) Pleochrosim is medium strong X pale reddish brown. Y yellowish brown, Z dark yellowish brown. absorption Z > V > X, optical dispersion weak, r > v. Optical axis plane Is parallel to (010), with X approximately parallel to a and Z nearly parallel to c Bendadaite has vitreous to sub-adamantine luster, is translucent and non-fluorescent It is brittle, shows irregular fracture and a good cleavage parallel to 1010} 3 15 0 10 g/cm(3), 3 193 g/cm3 (for the empirical formula) The five strongest powder diffraction lines [d in angstrom (I)(hkl] are 10 22 (10)(100), 7 036 (8)(110), 4 250 (5)(11 I), 2 865 (4)(311), 4 833 (3)(020,011) The d spacings are very similar to those of its Zn analogue, ojelaite The crystal structure of bendadaite was solved and refined using a crystal from the co-type locality with the composition (Fe(0 95)(2+)rectangle(0 05))(Sigma 1 00)(Fe(1 80)(3+)Al(0 20))Sigma(2 00)(As(1 48)P(0 52))(Sigma 2 00)O(8)) (OH)(2) 4H(2)O (R = 16%) and confirms an arthurite-type atomic arrangement
Resumo:
Several major iron deposits occur in the Quadrilatero Ferrifero (QF), southeastern region of Brazil, where metamorphosed and heterogeneously deformed banded iron formation (BIF) of the Caue Formation, regionally called itabirite, was transformed into high- (Fe >64%) and lowgrade (30%
Resumo:
The metamorphosed banded iron formation from the Nogoli Metamorphic Complex of western Sierra de San Luis, Eastern Sierras Pampeanas of Argentina (Nogoli area, 32 degrees 55`S-66 degrees 15`W) is classified as an oxide facies iron formation of Algoma Type, with a tectonic setting possibly associated with an island arc or back arc, on the basis of field mapping, mineral and textural arrangements and whole rock geochemical features. The origin of banded iron formation is mainly related to chemical precipitation of hydrogenous sediments from seawater in oceanic environments. The primary chemical precipitate is a result of solutions that represent mixtures of seawater and hydrothermal fluids, with significant dilution by maficultramafic volcanic and siliciclastic materials. Multi-stage T(DM) model ages of 1670, 1854 and 1939 Ma and positive, mantle-like xi Nd((1502)) values of +3.8, +1.5 and +0.5 from the banded iron formation are around the range of those mafic to ultramafic meta-volcanic rocks of Nogoli Metamorphic Complex, which are between 1679 and 1765 Ma and +2.64 and +3.68, respectively. This Sm and Nd isotopic connection suggests a close genetic relationship between ferruginous and mafic-ultramafic meta-volcanic rocks, as part of the same island arc or back arc setting. A previous Sm-Nd whole rock isochron of similar to 1.5 Ga performed on mafic-ultramafic meta-volcanic rocks led to the interpretation that chemical sedimentation as old as Mesoproterozoic is possible for the banded iron formation. A clockwise P-T path can be inferred for the regional metamorphic evolution of the banded iron formation, with three distinctive trajectories: (1) Relict prograde M(1)-M(3) segment with gradual P and T increase from greenschist facies at M(1) to amphibolite facies at M(3). (2) Peak P-T conditions at high amphibolite-low granulite facies during M(4). (3) Retrograde counterpart of M(4), that returns from amphibolite facies and stabilizes at greenschist facies during M(5). Each trajectory may be regarded as produced by different tectonic events related to the Pampean? (1) and the Famatinian (2 and 3) orogenies, during the Early to Middle Paleozoic. The Nogoli Metamorphic Complex is interpreted as part of a greenstone belt within the large Meso- to Neoproterozoic Pampean Terrane of the Eastern Sierras Pampeanas of Argentina. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Aim: The aim of the study was to evaluate the association between Helicobacter pylori infection and iron deficiency (ID) in adolescents attending a public school. Patients and Methods: From March to June 2001, a cross-sectional study was conducted among adolescents (10-16 years) enrolled in a single public school in Sao Paulo, Brazil. Of 400 eligible students, 195 agreed to participate, but 1 was excluded due to sickle cell disease. A blood sample was collected from each subject to measure hemoglobin and ferritin. H pylori status was investigated with the 13 C-urea breath test. All of the subjects with either anemia or ID were given iron therapy. Results: H pylori prevalence was 40.7% (79/194), being higher in male subjects (45/90 vs 34/104, P = 0.014). There was no relation between infection and nutritional status. Abnormally low serum ferritin was observed in 12 subjects, half of whom were positive for H pylori (odds ratio [OR] 1.49, 95% confidence interval [CI] 0.38-5.81). The median serum ferritin was 33.6 ng/mL (interquartile range 23.9-50.9) in infected subjects and 35.1 ng/mL (interquartile range 23.7-53.9) in uninfected subjects. Anemia was detected in 2% (4/194) of the students, half of whom were infected (OR 1.47, 95% CI 0.1-20.6). The mean hemoglobin value in infected subjects was 13.83 g/dL +/- 1.02 versus 14 g/dL +/- 1.06 in uninfected subjects. Conclusions: The study was not able to find a relation between H pylori infection and ID or anemia.
Resumo:
Tropomyosin (Tm) is a dimeric coiled-coil protein that polymerizes through head-to-tail interactions. These polymers bind along actin filaments and play an important role in the regulation of muscle contraction. Analysis of its primary structure shows that Tm is rich in acidic residues, which are clustered along the molecule and may from sites for divalent cation binding. In a previous study, we showed that the Mg(2+)-induced increase in stability of the C-terminal half of Tin is sensitive to imitations near the C-terminus. In the present report, we study the interaction between Mg(2+) and full-length Tin and smaller fragments corresponding to the last 65 and 26 Tin residues. Although the smaller Tin peptide (Tm(259-284(W269))) is flexible and to large extent unstructured, the larger Tm(220-284(W269)) fragments forms a coiled coil in solution whose stability increases significantly in the presence of Mg(2+). NMR analysis shows thin Mg(2+) induces chemical shift perturbations in both Tm(220-284(W269)) and Tm(259-284(W269)) in the vicinity of His276, in which are located several negatively charged residues. (C) 2009 Wiley Periodicals, Inc. Biopolymers 91: 583-590, 2009.
Preparation of C-terminal modified peptides through alcoholysis and thiolysis mediated by metal ions
Resumo:
The alpha-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB`s cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37 degrees C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other alpha-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml(-1)) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(center dot), and those with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(center dot) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 mu M) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Xylella fastidiosa is the etiologic agent of a wide range of plant diseases, including citrus variegated chlorosis (CVC), a major threat to citrus industry. The genomes of several strains of this phytopathogen were completely sequenced, enabling large-scale functional studies. DNA microarrays representing 2,608 (91.6%) coding sequences (CDS) of X. fastidiosa CVC strain 9a5c were used to investigate transcript levels during growth with different iron availabilities. When treated with the iron chelator 2,2`-dipyridyl, 193 CDS were considered up-regulated and 216 were considered down-regulated. Upon incubation with 100 mu M ferric pyrophosphate, 218 and 256 CDS were considered up- and down-regulated, respectively. Differential expression for a subset of 44 CDS was further evaluated by reverse transcription-quantitative PCR. Several CDS involved with regulatory functions, pathogenicity, and cell structure were modulated under both conditions assayed, suggesting that major changes in cell architecture and metabolism occur when X. fastidiosa cells are exposed to extreme variations in iron concentration. Interestingly, the modulated CDS include those related to colicin V-like bacteriocin synthesis and secretion and to functions of pili/fimbriae. We also investigated the contribution of the ferric uptake regulator Fur to the iron stimulon of X. fastidiosa. The promoter regions of the strain 9a5c genome were screened for putative Fur boxes, and candidates were analyzed by electrophoretic mobility shift assays. Taken together, our data support the hypothesis that Fur is not solely responsible for the modulation of the iron stimulon of X fastidiosa, and they present novel evidence for iron regulation of pathogenicity determinants.
Resumo:
Akaganeite is a very rare iron oxyhydroxide in nature. It can be obtained by many synthetic routes, but thermohydrolysis is the most common method reported in the literature. In this work, akaganeite-like materials were prepared through the thermohydrolysis of FeCl(3)center dot 6H(2)O in water and suspensions containing clay minerals. X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) data show that the clays determine the crystal phase and size of the iron oxyhydroxide crystals. According to XRD and FTIR data, beta-FeO(OH) (akaganeite) is the main metal oxyhydroxide phase. Considering the small basal spacing (d(0 0 1)) displacement observed when comparing the XRD patterns of pristine clays with the composites containing beta-FeO(OH), the iron oxyhydroxide should be mostly located on the basal and edge surfaces of the clay minerals. UV-Vis electronic absorption spectra indicate that the preferred phase of the iron oxyhydroxide is determined by the nature of the clay minerals. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Carra sawdust pretrated with formaldehyde was used to adsorb RR239 (reactive azo dye) at varying pH and zerovalent iron (ZVI) dosage. Modeling of kinetic results shows that sorption process is best described by the pseudo-second-order model. Batch experiments suggest that the decolorization efficiency was strongly enhanced with the presence of ZVI and low solution pH. The kinetics of dye sorption by mixed sorbent (5 g of sawdust and 180 mg of ZVI) at pH 2.0 was rapid, reaching more than 90% of the total discoloration in three minutes.
Resumo:
Iron supplementation in hemodialysis patients is fundamental to erythropoiesis, but may cause harmful effects. We measured oxidative stress using labile plasma iron (LPI) after parenteral iron replacement in chronic hemodialysis patients. Intravenous iron saccharate (100 mg) was administered in patients undergoing chronic hemodialysis (N = 20). LPI was measured by an oxidant-sensitive fluorescent probe at the beginning of dialysis session (T0), at 10 min (T1), 20 min (T2), and 30 min (T3) after the infusion of iron and at the subsequent session; P < 0.05 was significant. The LPI values were significantly raised according to the time of administration and were transitory: -0.02 +/- 0.20 mu mol/L at the beginning of the first session, 0.01 +/- 0.26 mu mol/L at T0, 0.03 +/- 0.23 mu mol/L at T1, 0.09 +/- 0.28 mmol/L at T2, 0.18 +/- 0.52 mmol/L at T3, and -0.02 +/- 0.16 mmol/L (P = 0.001 to 0.041) at the beginning of the second session. The LPI level in patients without iron supplementation was -0.06 +/- 0.16 mmol/L. Correlations of LPI according to time were T1, T2, and T3 vs. serum iron (P = 0.01, P = 0.007, and P = 0.0025, respectively), and T2 and T3 vs. transferrin saturation (P = 0.001 and P = 0.0003, respectively). LPI generation after intravenous saccharate administration is time-dependent and transitorily detected during hemodialysis. The LPI increment had a positive correlation to iron and transferrin saturation.