952 resultados para INVASIVE CERVICAL-CANCER
Resumo:
The presence of tumor-initiating cells (CD44(+)/CD24(-)) in solid tumors has been reported as a possible cause of cancer metastasis and treatment failure. Nevertheless, little is know about the presence of CD44(+)/CD24(-) cells within the primary tumor and metastasis. The proportion of CD44(+)/CD24(-) cells was analyzed in 40 samples and in 10 lymph node metastases using flow cytometry phenotyping. Anti-human CD326 (EpCam; FITC), antihuman CD227 (MUC-1; FITC), anti-human CD44 (APC), and anti-human CD24 (PE), anti-ABCG2 (PE), and anti-CXCR4 (PeCy7) were used for phenotype analysis. The mean patient age was 60.5 years (range, 33-87 years); mean primary tumor size (pT) was 1.8 cm (0.5-3.5 cm). The Wilcoxon or Kruskal-Wallis test was used for univariate analyses. Logistic regression was used for multivariate analysis. The median percentage of CD44(+)/CD24(-) cells within primary invasive ductal carcinomas (IDC) was 2.7% (range, 0.2-71.2). In lymph node metastases, we observed a mean of 6.1% (range, 0.07-53.7). The percentage of CD44(+)/CD24(-) cells in IDCs was not associated with age, pT, tumor grade and HER2. We observed a significantly enrichment of CD44(+)/CD24(-) and ABCG2(+) cells in ESA(+) cell population in patients with positive lymph nodes (P = 0.02 and P = 0.04, respectively). Our data suggest that metastatic dissemination is associated with an increase in tumorinitiating cells in stage I and II breast cancer.
Resumo:
The progression of carcinogenesis entails the detachment of cells, invasion and migration of neoplastic cells. Alterations in epithelial adhesion and basement membrane proteins might mediate the early stages of carcinogenesis. This study investigated the expression of adhesion molecules and the basement membrane protein laminin-5 in actinic cheilitis (AC) and incipient squamous cell carcinoma of the lower lip to understand early photocarcinogenesis. Ln-5 gamma 2 chain as well as alpha 3, beta 1 subunits of alpha 3 beta 1 heterodimer and beta 4 subunit of integrin alpha 6 beta 4 were evaluated by immunohistochemistry in 16 cases of AC and 16 cases of superficially invasive squamous cell carcinoma (SISCC). Most AC cases showed reduced expression of beta 1, beta 4 and alpha 3 integrins, and SISCCs lacked beta 1, beta 4 and alpha 3 integrins in the invasive front. AC cases were negative for the Ln-5 gamma 2 chain. Five cases of SISCC (31%) showed heterogeneous Ln-5 gamma 2 chain expression in the invasive front of the tumor. Integrin beta 1, beta 4 and alpha 3 expression is lost during the early stages of lip carcinogenesis. Expression of Ln-5 gamma 2 in the invasive front in cases and its correlation with tumor progression suggest that it mediates the acquisition of the migrating and invading epithelial cell phenotype. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Abstract Background Immunological alterations are implicated in the increased prevalence of high-grade squamous intraepithelial lesions (HG-SIL) and persistent human papillomavirus (HPV) infection. This study evaluated the expression of CD4, CD8, CD25 (IL-2Rα) and CD28 antigens from SIL biopsies, stratified by HIV status and HPV-type. Biopsies specimens from 82 (35 HIV+) women with a normal cervix, low-grade (LG-SIL) or high-grade lesions (HG-SIL) were studied. CD molecule expression was evaluated by immunohistochemistry and HPV detection/typing performed using PCR techniques. Results CD4 stromal staining was increased in patients with HPV18. Women with HPV16 infection showed decreased: a) CD8 and CD25 stromal staining, b) CD25 staining in LG-SIL epithelium and in HG-SIL stroma. In HIV- women samples, CD28 epithelial staining and CD8 stromal staining surrounding metaplastic epithelium were less intense and even absent, as compared to HIV+ women. Both epithelial and stromal CD8 staining was more intense in the HG-SIL/HIV+ group than in the HG-SIL/HIV- group. Positive correlations were observed between CD4/CD25, CD4/CD28 and CD25/CD28 in the stroma and CD25/CD28 in the epithelium. Conclusion HIV status and HPV-type may influence the lymphomononuclear cell profile present in the spectrum of cervical lesions. The knowledge of the infiltrating cell profile in cervical tumours may help the development of specific anti-tumoural strategies.
Resumo:
Abstract Background The main focus of several studies concerned with cancer progression and metastasis is to analyze the mechanisms that allow cancer cells to interact and quickly adapt with their environment. Integrins, a family of transmembrane glycoproteins, play a major role in invasive and metastatic processes. Integrins are involved in cell adhesion in both cell-extracellular matrix and cell-cell interactions, and particularly, β1 integrin is involved in proliferation and differentiation of cells in the development of epithelial tissues. This work aimed to investigate the putative role of β1 integrin expression on survival and metastasis in patients with breast invasive ductal carcinoma (IDC). In addition, we compared the expression of β1 integrin in patients with ductal carcinoma in situ (DCIS). Methods Through tissue microarray (TMA) slides containing 225 samples of IDC and 67 samples of DCIS, β1 integrin expression was related with several immunohistochemical markers and clinicopathologic features of prognostic significance. Results β1 integrin was overexpressed in 32.8% of IDC. In IDC, β1 integrin was related with HER-2 (p = 0.019) and VEGF (p = 0.011) expression and it had a significant relationship with metastasis and death (p = 0.001 and p = 0.05, respectively). Kaplan-Meier survival analysis showed that the overexpression of this protein is very significant (p = 0.002) in specific survival (number of months between diagnosis and death caused by the disease). There were no correlation between IDC and DCIS (p = 0.559) regarding β1 integrin expression. Conclusions Considering that the expression of β1 integrin in breast cancer remains controversial, specially its relation with survival of patients, our findings provide further evidence that β1 integrin can be a marker of poor prognosis in breast cancer. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6652215267393871
Resumo:
Abstract Background MYC deregulation is a common event in gastric carcinogenesis, usually as a consequence of gene amplification, chromosomal translocations, or posttranslational mechanisms. FBXW7 is a p53-controlled tumor-suppressor that plays a role in the regulation of cell cycle exit and reentry via MYC degradation. Methods We evaluated MYC, FBXW7, and TP53 copy number, mRNA levels, and protein expression in gastric cancer and paired non-neoplastic specimens from 33 patients and also in gastric adenocarcinoma cell lines. We also determined the invasion potential of the gastric cancer cell lines. Results MYC amplification was observed in 51.5% of gastric tumor samples. Deletion of one copy of FBXW7 and TP53 was observed in 45.5% and 21.2% of gastric tumors, respectively. MYC mRNA expression was significantly higher in tumors than in non-neoplastic samples. FBXW7 and TP53 mRNA expression was markedly lower in tumors than in paired non-neoplastic specimens. Moreover, deregulated MYC and FBXW7 mRNA expression was associated with the presence of lymph node metastasis and tumor stage III-IV. Additionally, MYC immunostaining was more frequently observed in intestinal-type than diffuse-type gastric cancers and was associated with MYC mRNA expression. In vitro studies showed that increased MYC and reduced FBXW7 expression is associated with a more invasive phenotype in gastric cancer cell lines. This result encouraged us to investigate the activity of the gelatinases MMP-2 and MMP-9 in both cell lines. Both gelatinases are synthesized predominantly by stromal cells rather than cancer cells, and it has been proposed that both contribute to cancer progression. We observed a significant increase in MMP-9 activity in ACP02 compared with ACP03 cells. These results confirmed that ACP02 cells have greater invasion capability than ACP03 cells. Conclusion In conclusion, FBXW7 and MYC mRNA may play a role in aggressive biologic behavior of gastric cancer cells and may be a useful indicator of poor prognosis. Furthermore, MYC is a candidate target for new therapies against gastric cancer.
Resumo:
BACKGROUND: MYC deregulation is a common event in gastric carcinogenesis, usually as a consequence of gene amplification, chromosomal translocations, or posttranslational mechanisms. FBXW7 is a p53-controlled tumor-suppressor that plays a role in the regulation of cell cycle exit and reentry via MYC degradation. METHODS: We evaluated MYC, FBXW7, and TP53 copy number, mRNA levels, and protein expression in gastric cancer and paired non-neoplastic specimens from 33 patients and also in gastric adenocarcinoma cell lines. We also determined the invasion potential of the gastric cancer cell lines. RESULTS: MYC amplification was observed in 51.5% of gastric tumor samples. Deletion of one copy of FBXW7 and TP53 was observed in 45.5% and 21.2% of gastric tumors, respectively. MYC mRNA expression was significantly higher in tumors than in non-neoplastic samples. FBXW7 and TP53 mRNA expression was markedly lower in tumors than in paired non-neoplastic specimens. Moreover, deregulated MYC and FBXW7 mRNA expression was associated with the presence of lymph node metastasis and tumor stage III-IV. Additionally, MYC immunostaining was more frequently observed in intestinal-type than diffuse-type gastric cancers and was associated with MYC mRNA expression. In vitro studies showed that increased MYC and reduced FBXW7 expression is associated with a more invasive phenotype in gastric cancer cell lines. This result encouraged us to investigate the activity of the gelatinases MMP-2 and MMP-9 in both cell lines. Both gelatinases are synthesized predominantly by stromal cells rather than cancer cells, and it has been proposed that both contribute to cancer progression. We observed a significant increase in MMP-9 activity in ACP02 compared with ACP03 cells. These results confirmed that ACP02 cells have greater invasion capability than ACP03 cells. CONCLUSION: In conclusion, FBXW7 and MYC mRNA may play a role in aggressive biologic behavior of gastric cancer cells and may be a useful indicator of poor prognosis. Furthermore, MYC is a candidate target for new therapies against gastric cancer.
Resumo:
High serum levels of Interleukin-6 (IL-6) correlate with poor outcome in breast cancer patients. However no data are available on the relationship between IL-6 and stem/progenitor cells which may fuel the genesis of breast cancer in vivo. Herein, we address this issue in mammospheres (MS), multi-cellular structures enriched in stem/progenitor cells of the mammary gland, and also in MCF-7 breast cancer cells. We show that MS from node invasive breast carcinoma tissues express IL-6 mRNA at higher levels than MS from matched non-neoplastic mammary glands. We find that IL-6 mRNA is detectable only in basal-like breast carcinoma tissues, an aggressive variant showing stem cell features. Our results reveal that IL-6 triggers a Notch-3-dependent up-regulation of the Notch ligand Jagged-1, whose interaction with Notch-3 promotes the growth of MS and MCF-7 derived spheroids. Moreover, IL-6 induces a Notch-3-dependent up-regulation of the carbonic anhydrase IX gene, which promotes a hypoxia-resistant/invasive phenotype in MCF-7 cells and MS. Finally, an autocrine IL-6 loop relies upon Notch-3 activity to sustain the aggressive features of MCF-7-derived hypoxia-selected cells. In conclusion, our data support the hypothesis that IL-6 induces malignant features in Notch-3 expressing, stem/progenitor cells from human ductal breast carcinoma and normal mammary gland.
Resumo:
Neoplastic overgrowth depends on the cooperation of several mutations ultimately leading to major rearrangements in cellular behaviour. The molecular crosstalk occurring between precancerous and normal cells strongly influences the early steps of the tumourigenic process as well as later stages of the disease. Precancerous cells are often removed by cell death from normal tissues but the mechanisms responsible for such fundamental safeguard processes remain in part elusive. To gain insight into these phenomena I took advantage of the clonal analysis methods available in Drosophila for studying the phenotypes due to loss of function of the neoplastic tumour suppressor lethal giant larvae (lgl). I found that lgl mutant cells growing in wild-type imaginal wing discs are subject to the phenomenon of cell competition and are eliminated by JNK-dependent cell death because they express very low levels of dMyc oncoprotein compared to those in the surrounding tissue. Indeed, in non-competitive backgrounds lgl mutant clones are able to overgrow and upregulate dMyc, overwhelming the neighbouring tissue and forming tumourous masses that display several cancer hallmarks. These phenotypes are completely abolished by reducing dMyc abundance within mutant cells while increasing it in lgl clones growing in a competitive context re-establishes their tumourigenic potential. Similarly, the neoplastic growth observed upon the oncogenic cooperation between lgl mutation and activated Ras/Raf/MAPK signalling was found to be characterised by and dependent on the ability of cancerous cells to upregulate dMyc with respect to the adjacent normal tissue, through both transcriptional and post-transcriptional mechanisms, thereby confirming its key role in lgl-induced tumourigenesis. These results provide first evidence that the dMyc oncoprotein is required in lgl mutant tissue to promote invasive overgrowth in developing and adult epithelial tissues and that dMyc abundance inside versus outside lgl mutant clones plays a key role in driving neoplastic overgrowth.
Resumo:
Non-small-cell lung cancer (NSCLC) represents the leading cause of cancer death worldwide, and 5-year survival is about 16% for patients diagnosed with advanced lung cancer and about 70-90% when the disease is diagnosed and treated at earlier stages. Treatment of NSCLC is changed in the last years with the introduction of targeted agents, such as gefitinib and erlotinib, that have dramatically changed the natural history of NSCLC patients carrying specific mutations in the EGFR gene, or crizotinib, for patients with the EML4-ALK translocation. However, such patients represent only about 15-20% of all NSCLC patients, and for the remaining individuals conventional chemotherapy represents the standard choice yet, but response rate to thise type of treatment is only about 20%. Development of new drugs and new therapeutic approaches are so needed to improve patients outcome. In this project we aimed to analyse the antitumoral activity of two compounds with the ability to inhibit histone deacethylases (ACS 2 and ACS 33), derived from Valproic Acid and conjugated with H2S, in human cancer cell lines derived from NSCLC tissues. We showed that ACS 2 represents the more promising agent. It showed strong antitumoral and pro-apoptotic activities, by inducing membrane depolarization, cytocrome-c release and caspase 3 and 9 activation. It was able to reduce the invasive capacity of cells, through inhibition of metalloproteinases expression, and to induce a reduced chromatin condensation. This last characteristic is probably responsible for the observed high synergistic activity in combination with cisplatin. In conclusion our results highlight the potential role of the ACS 2 compound as new therapeutic option for NSCLC patients, especially in combination with cisplatin. If validated in in vivo models, this compound should be worthy for phase I clinical trials.
Resumo:
Cancer is one of the principal causes of death in the world; almost 8.2 million of deaths were counted in 2012. Emerging evidences indicate that most of the tumors have an increased glycolytic rate and a detriment of oxidative phosphorylation to support abnormal cell proliferation; this phenomenon is known as aerobic glycolysis or Warburg effect. This switching toward glycolysis implies that cancer tissues metabolize approximately tenfold more glucose to lactate in a given time and the amount of lactate released from cancer tissues is much greater than from normal ones. In view of these fundamental discoveries alterations of the cellular metabolism should be considered a crucial hallmark of cancer. Therefore, the investigation of the metabolic differences between normal and transformed cells is important in cancer research and it might find clinical applications. The aim of the project was to investigate the cellular metabolic alterations at single cell level, by monitoring glucose and lactate, in order to provide a better insight in cancer research. For this purpose, electrochemical techniques have been applied. Enzyme-based electrode biosensors for lactate and glucose were –ad hoc- optimized within the project and used as probes for Scanning Electrochemical Microscopy (SECM). The UME biosensor manufacturing and optimization represented a consistent part of the work and a full description of the sensor preparation protocols and of the characterization methods employed is reported. This set-up (SECM used with microbiosensor probes) enabled the non-invasive study of cellular metabolism at single cell level. The knowledge of cancer cell metabolism is required to design more efficient treatment strategies.
Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer
Resumo:
Polycomb group (PcG) proteins function as multiprotein complexes and are part of a gene regulatory mechanism that determines cell fate during normal and pathogenic development. Several studies have implicated the deregulation of different PcG proteins in neoplastic progression. Pancreatic ductal adenocarcinoma is an aggressive neoplasm that follows a multistep model of progression through precursor lesions called pancreatic intraepithelial neoplasia (PanIN). Aim of this study was to investigate the role of PcG protein CBX7 in pancreatic carcinogenesis and to evaluate its possible diagnostic and prognostic significance. We analysed by immunohistochemistry the expression of CBX7 in 210 ductal pancreatic adenocarcinomas from resection specimens, combined on a tissue microarray (TMA) including additional 40 PanIN cases and 40 normal controls. The results were evaluated by using receiver operating characteristic (ROC) curve analysis for the selection of cut-off scores and correlated to the clinicopathological parameters of the tumours and the outcome of the patients. Expression of E-cadherin, a protein positively regulated by CBX7, was also assessed. A significantly differential, and progressively decreasing CBX7 protein expression was found between normal pancreatic tissue, PanINs and invasive ductal adenocarcinoma. Loss of CBX7 expression was associated with increasing malignancy grade in pancreatic adenocarcinoma, whereas the maintenance of CBX7 expression showed a trend toward a longer survival. Moreover, loss of E-cadherin expression was associated with loss of CBX7 and with a trend towards worse patient survival. These results suggest that CBX7 plays a role in pancreatic carcinogenesis and that its loss of expression correlates to a more aggressive phenotype.
Resumo:
In colorectal cancer, tumor budding at the invasive front (peritumoral budding) is an established prognostic parameter and decreased in mismatch repair-deficient tumors. In contrast, the clinical relevance of tumor budding within the tumor center (intratumoral budding) is not yet known. The aim of the study was to determine the correlation of intratumoral budding with peritumoral budding and mismatch repair status and the prognostic impact of intratumoral budding using 2 independent patient cohorts. Following pancytokeratin staining of whole-tissue sections and multiple-punch tissue microarrays, 2 independent cohorts (group 1: n = 289; group 2: n = 222) with known mismatch repair status were investigated for intratumoral budding and peritumoral budding. In group 1, intratumoral budding was strongly correlated to peritumoral budding (r = 0.64; P < .001) and less frequent in mismatch repair-deficient versus mismatch repair-proficient cases (P = .177). Sensitivity and specificity for lymph node positivity were 72.7% and 72.1%. In mismatch repair-proficient cancers, high-grade intratumoral budding was associated with right-sided location (P = .024), advanced T stage (P = .001) and N stage pN (P < .001), vascular invasion (P = .041), infiltrating tumor margin (P = .003), and shorter survival time (P = .014). In mismatch repair-deficient cancers, high intratumoral budding was linked to higher tumor grade (P = .004), vascular invasion (P = .009), infiltrating tumor margin (P = .005), and more unfavorable survival time (P = .09). These associations were confirmed in group 2. High-grade intratumoral budding was a poor prognostic factor in univariate (P < .001) and multivariable analyses (P = .019) adjusting for T stage, N stage distant metastasis, and adjuvant therapy. These preliminary results on 511 patients show that intratumoral budding is an independent prognostic factor, supporting the future investigation of intratumoral budding in larger series of both preoperative and postoperative rectal and colon cancer specimens.
Resumo:
Despite improvements in prevention and management of colorectal cancer (CRC), uncontrolled tumor growth with metastatic spread to distant organs remains an important clinical concern. Genetic deletion of CD39, the dominant vascular and immune cell ectonucleotidase, has been shown to delay tumor growth and blunt angiogenesis in mouse models of melanoma, lung and colonic malignancy. Here, we tested the influence of CD39 on CRC tumor progression and metastasis by investigating orthotopic transplanted and metastatic cancer models in wild-type BALB/c, human CD39 transgenic and CD39 deficient mice. We also investigated CD39 and P2 receptor expression patterns in human CRC biopsies. Murine CD39 was expressed by endothelium, stromal and mononuclear cells infiltrating the experimental MC-26 tumors. In the primary CRC model, volumes of tumors in the subserosa of the colon and/or rectum did not differ amongst the treatment groups at day 10, albeit these tumors rarely metastasized to the liver. In the dissemination model, MC-26 cell line-derived hepatic metastases grew significantly faster in CD39 over-expressing transgenics, when compared to CD39 deficient mice. Murine P2Y2 was significantly elevated at both mRNA and protein levels, within the larger liver metastases obtained from CD39 transgenic mice where changes in P2X7 levels were also noted. In clinical samples, lower levels of CD39 mRNA in malignant CRC tissues appeared associated with longer duration of survival and could be linked to less invasive tumors. The modulatory effects of CD39 on tumor dissemination and differential levels of CD39, P2Y2 and P2X7 expression in tumors suggest involvement of purinergic signalling in these processes. Our studies also suggest potential roles for purinergic-based therapies in clinical CRC.
Resumo:
Management and outcomes of patients with invasive intraductal papillary mucinous neoplasm (IPMN) of the pancreas are not well established. We investigated whether adjuvant radiotherapy (RT) improved cancer-specific survival (CSS) and overall survival (OS) among patients undergoing surgical resection for invasive IPMN.
Resumo:
Thrombotic microangiopathy (TMA) has multiple etiologies. In the four disorders described in this review, the primary organ involved is the kidney. Drug-associated TMA can be an acute, immune-mediated disorder or the result of gradual, dose-dependent toxicity. TMA may occur in patients with advanced HIV infection, possibly mediated by angio-invasive infections. TMA following allogeneic hematopoietic stem cell transplantation may also be caused by drug toxicity; the pathogenesis may involve inhibition of vascular endothelial cell growth factor in renal podocytes. Malignancies of many types with systemic microvascular involvement may cause TMA. Recognition that these syndromes may mimic TTP is important to provide appropriate management and to avoid the inappropriate use of plasma exchange treatment.