963 resultados para INVARIANT-MANIFOLDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This technical report presents a method for designing a constrained output-feedback model predictive controller (MPC) that behaves in the same way as an existing baseline stabilising linear time invariant output-feedback controller when constraints are inactive. The baseline controller is cast into an observer-compensator form and an inverse-optimal cost function is used as the basis of the MPC controller. The available degrees of design freedom are explored, and some guidelines provided for the selection of an appropriate observer-compensator realisation that will best allow exploitation of the constraint-handling and redundancy management capabilities of MPC. Consideration is given to output setpoint tracking, and the method is demonstrated with three different multivariable plants of varying complexity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling interval) and of significant processing time are discussed. In the former case, it is possible to obtain perfect. © 1985 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present a new, compact derivation of state-space formulae for the so-called discretisation-based solution of the H∞ sampled-data control problem. Our approach is based on the established technique of continuous time-lifting, which is used to isometrically map the continuous-time, linear, periodically time-varying, sampled-data problem to a discretetime, linear, time-invariant problem. State-space formulae are derived for the equivalent, discrete-time problem by solving a set of two-point, boundary-value problems. The formulae accommodate a direct feed-through term from the disturbance inputs to the controlled outputs of the original plant and are simple, requiring the computation of only a single matrix exponential. It is also shown that the resultant formulae can be easily re-structured to give a numerically robust algorithm for computing the state-space matrices. © 1997 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of an inverted hybrid digital/ optical VanderLugt type correlator based on a holographic memory is reported in this paper. A set of reference templates is stored in a photorefractive crystal (PRC) by angular hologram multiplexing. In the filter plane, a phase-modulating liquid crystal television (LCTV) serves as a phase-only input device. During the recognition process, which is based on the pure phase correlation, the reference templates are correlated sequentially with the input object. This correlator shows high sensitivity to object rotation, sharp correlation peaks, high light efficiency, and is fully shift-invariant in spite of the PRC thickness. The influences of the LCTV on the performance of the system are discussed and experimental results are shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a spectral density matrix or, equivalently, a real autocovariance sequence, the author seeks to determine a finite-dimensional linear time-invariant system which, when driven by white noise, will produce an output whose spectral density is approximately PHI ( omega ), and an approximate spectral factor of PHI ( omega ). The author employs the Anderson-Faurre theory in his analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the problem of recovering the 3D shape of a surface of revolution from a single uncalibrated perspective view. The algorithm introduced here makes use of the invariant properties of a surface of revolution and its silhouette to locate the image of the revolution axis, and to calibrate the focal length of the camera. The image is then normalized and rectified such that the resulting silhouette exhibits bilateral symmetry. Such a rectification leads to a simpler differential analysis of the silhouette, and yields a simple equation for depth recovery. It is shown that under a general camera configuration, there will be a 2-parameter family of solutions for the reconstruction. The first parameter corresponds to an unknown scale, whereas the second one corresponds to an unknown attitude of the object. By identifying the image of a latitude circle, the ambiguity due to the unknown attitude can be resolved. Experimental results on real images are presented, which demonstrate the quality of the reconstruction. © 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a gradient-based motion capture system that robustly tracks a human hand, based on abstracted visual information - silhouettes. Despite the ambiguity in the visual data and despite the vulnerability of gradient-based methods in the face of such ambiguity, we minimise problems related to misfit by using a model of the hand's physiology, which is entirely non-visual, subject-invariant, and assumed to be known a priori. By modelling seven distinct aspects of the hand's physiology we derive prior densities which are incorporated into the tracking system within a Bayesian framework. We demonstrate how the posterior is formed, and how our formulation leads to the extraction of the maximum a posteriori estimate using a gradient-based search. Our results demonstrate an enormous improvement in tracking precision and reliability, while also achieving near real-time performance. © 2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Density modeling is notoriously difficult for high dimensional data. One approach to the problem is to search for a lower dimensional manifold which captures the main characteristics of the data. Recently, the Gaussian Process Latent Variable Model (GPLVM) has successfully been used to find low dimensional manifolds in a variety of complex data. The GPLVM consists of a set of points in a low dimensional latent space, and a stochastic map to the observed space. We show how it can be interpreted as a density model in the observed space. However, the GPLVM is not trained as a density model and therefore yields bad density estimates. We propose a new training strategy and obtain improved generalisation performance and better density estimates in comparative evaluations on several benchmark data sets. © 2010 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Common-rail fuel injection systems on modern light duty diesel engines are effectively able to respond instantaneously to changes in the demanded injection quantity. In contrast, the air-system is subject to significantly slower dynamics, primarily due to filling/emptying effects in the manifolds and turbocharger inertia. The behaviour of the air-path in a diesel engine is therefore the main limiting factor in terms of engine-out emissions during transient operation. This paper presents a simple mean-value model for the air-path during throttled operation, which is used to design a feed-forward controller that delivers very rapid changes in the in-cylinder charge properties. The feed-forward control action is validated using a state-of-the-art sampling system that allows true cycle-by-cycle measurement of the in-cylinder CO2 concentration. © 2011 SAE International.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces the Interlevel Product (ILP) which is a transform based upon the Dual-Tree Complex Wavelet. Coefficients of the ILP have complex values whose magnitudes indicate the amplitude of multilevel features, and whose phases indicate the nature of these features (e.g. ridges vs. edges). In particular, the phases of ILP coefficients are approximately invariant to small shifts in the original images. We accordingly introduce this transform as a solution to coarse scale template matching, where alignment concerns between decimation of a target and decimation of a larger search image can be mitigated, and computational efficiency can be maintained. Furthermore, template matching with ILP coefficients can provide several intuitive "near-matches" that may be of interest in image retrieval applications. © 2005 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces a method by which intuitive feature entities can be created from ILP (InterLevel Product) coefficients. The ILP transform is a pyramid of decimated complex-valued coefficients at multiple scales, derived from dual-tree complex wavelets, whose phases indicate the presence of different feature types (edges and ridges). We use an Expectation-Maximization algorithm to cluster large ILP coefficients that are spatially adjacent and similar in phase. We then demonstrate the relationship that these clusters possess with respect to observable image content, and conclude with a look at potential applications of these clusters, such as rotation- and scale-invariant object recognition. © 2005 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method for modelling the statistics of 2D photographic images useful in image restoration is defined. The new method is based on the Dual Tree Complex Wavelet Transform (DT-CWT) but a phase rotation is applied to the coefficients to create complex coefficients whose phase is shift-invariant at multiscale edge and ridge features. This is in addition to the magnitude shift invariance achieved by the DT-CWT. The increased correlation between coefficients adjacent in space and scale provides an improved mechanism for signal estimation. © 2006 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently we have developed a new form of discrete wavelet transform, which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. This introduces limited redundancy (2 m:1 for m-dimensional signals) and allows the transform to provide approximate shift invariance and directionally selective filters (properties lacking in the traditional wavelet transform) while preserving the usual properties of perfect reconstruction and computational efficiency with good well-balanced frequency responses. In this paper we analyse why the new transform can be designed to be shift invariant, and describe how to estimate the accuracy of this approximation and design suitable filters to achieve this.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mixture of Gaussians fit to a single curved or heavy-tailed cluster will report that the data contains many clusters. To produce more appropriate clusterings, we introduce a model which warps a latent mixture of Gaussians to produce nonparametric cluster shapes. The possibly low-dimensional latent mixture model allows us to summarize the properties of the high-dimensional clusters (or density manifolds) describing the data. The number of manifolds, as well as the shape and dimension of each manifold is automatically inferred. We derive a simple inference scheme for this model which analytically integrates out both the mixture parameters and the warping function. We show that our model is effective for density estimation, performs better than infinite Gaussian mixture models at recovering the true number of clusters, and produces interpretable summaries of high-dimensional datasets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents a new copula based method for measuring dependence between random variables. Our approach extends the Maximum Mean Discrepancy to the copula of the joint distribution. We prove that this approach has several advantageous properties. Similarly to Shannon mutual information, the proposed dependence measure is invariant to any strictly increasing transformation of the marginal variables. This is important in many applications, for example in feature selection. The estimator is consistent, robust to outliers, and uses rank statistics only. We derive upper bounds on the convergence rate and propose independence tests too. We illustrate the theoretical contributions through a series of experiments in feature selection and low-dimensional embedding of distributions.