998 resultados para INRUSH CURRENT
Resumo:
We have grown resonant tunnelling diodes (RTDs) with different sized emitter prewells and without a prewell. The current-voltage (I-V) characteristics of them in different magnetic fields were investigated. Two important phenomena were observed. First, a high magnetic field can destroy the plateau-like structure in the I-V curves of the RTD. This phenomenon is ascribed to the fact that the high magnetic field will demolish the coupling between the energy level in the main quantum well and that in the emitter quantum well or in the prewell. Secondly, the existence and size of the prewell are also important factors influencing the plateau-like structure.
Resumo:
Current-voltage (I-V) characteristics of GaAs-based resonant tunneling diodes have been investigated in the presence of a perpendicular magnetic field. Electron resonant tunneling is strongly suppressed by the applied magnetic field, leading to peak current decreasing with increasing magnetic field. The observed plateau-like structures appear in negative differential resistance region on the I-V curves and are magnetic-field dependent. The plateau-like structures are due to the coupling between the energy levels in the emitter well and in the main quantum well. (C) 2004 American Institute of Physics.
Resumo:
The influence of a transverse magnetic field up to 13 T at 1.6 K on the current-voltage, I (V), characteristics of a doped GaAs/AlAs superlattice was investigated. Current hysteresis was observed in the domain formation regions of the I (V) at zero magnetic field while applied bias was swept in both up (0-6 V) and down (6-0 V) directions. The magnitude of current hysteresis was reduced and finally disappeared with increasing transverse magnetic field. The effect is explained as the modification of the current density versus electric field characteristic by transverse magnetic fields. Calculated results based on the tunnelling current formula in a superlattice support our interpretation.
Resumo:
We investigate a new structure of high-power 660-nm AlGaInP laser diodes. In the structure, a p-GaAs layer is grown on the ridge waveguide serving as the current-blocking layer, and nonabsorbing windows are only fabricated near the cavity facets to increase the catastrophic-optical-damage level. Stable fundamental mode operation was achieved at up to 80 mW without kinks, and the maximum output power was 184 mW at 22 degrees C. The threshold current was 40 mA.
Resumo:
We have studied the current-voltage properties of a double quantum dot (DQD) connected by leads in arrangements that vary from series to symmetrical parallel configurations, in the presence of strong intradot Coulomb interaction. The influences of the connecting configurations and the difference between dot levels on the magnitude and symmetry of the total current are examined. We find that the connecting configurations of the dots can determine the number of the current paths and in turn determine the magnitude of the current, while the coupling strengths between the dots and the leads together with the difference of dot levels determine the current-voltage symmetry. The negative differential conductance observed in serial DQD can be explained in terms of the reduction of the current paths. (c) 2005 American Institute of Physics.
Resumo:
1.5 mu m. n-type modulation-doping InGaAsP/InGaAsP strained multiple quantum wells grown by low pressure metalorganic chemistry vapor decomposition technology is reported for the first time in the world. N-type modulation-doped lasers exhibit much lower threshold current densities than conventional lasers with undoped barrier layers. The lowest threshold current density we obtained was 1052.5 A/cm(2) for 1000 mu m long lasers with seven quantum wells. The estimated threshold current density for an infinite cavity length was 94.72A/cm(2)/well, reduced by 23.3% compared with undoped barrier lasers. The n-type modulation doping effects on the lasing characteristics in 1.5 mu m devices have been demonstrated.
Resumo:
We have proposed a device, a superconducting-lead/quantum-dot/normal-lead system with an ac voltage applied on the gate of the quantum dot induced by a microwave, based on the one-parameter pump mechanism. It can generate a pure charge- or spin-pumped current. The direction of the charge current can be reversed by pushing the levels across the Fermi energy. A spin current arises when a magnetic field is applied on the quantum dot to split the two degenerate levels, and it can be reversed by reversing the applied magnetic field. The increase of temperature enhances these currents in certain parameter intervals and decreases them in other intervals. We can explain this interesting phenomenon in terms of the shrinkage of the superconducting gap and the concepts of photon-sideband and photon-assisted processes.
Resumo:
Based on our recent work on quantum transport [X. Q. Li , Phys. Rev. B 71, 205304 (2005)], we show how an efficient calculation can be performed for the current noise spectrum. Compared to the classical rate equation or the quantum trajectory method, the proposed approach is capable of tackling both the many-body Coulomb interaction and quantum coherence on an equal footing. The practical applications are illustrated by transport through quantum dots. We find that this alternative approach is in a certain sense simpler and more straightforward than the well-known Landauer-Buttiker scattering matrix theory.
Resumo:
Linearly polarized light at normal incidence injects a spin current into a strip of two-dimensional electron gas with Rashba spin-orbit coupling. The authors report observation of an electric current when such light is shed on the vincinity of the junction in a crossbar-shaped InGaAs/InAlAs quantum well Rashba system. The polarization dependence of this electric current was experimentally observed to be the same as that of the spin current. The authors attribute the observed electric current to the scattering of the optically injected spin current at the crossing. (c) 2007 American Institute of Physics.
Resumo:
We report the low threshold current density operation of strain-compensated In0.64Ga0.36As/In0.38Al0.62As quantum cascade lasers emitting near 4.94 mu m. By employing an enlarged strain-compensated structure and optimizing the injector doping density, a rather low threshold current density of 0.57 kA/cm(2) at 80K is achieved for an uncoated 20-mu m-wide and 2.5-mm-long laser.
Resumo:
The performance of the current sensor in power equipment may become worse affected by the environment. In this paper, based on ICA, we propose a method for on-line verification of the phase difference of the current sensor. However, not all source components are mutually independent in our application. In order to get an exact result, we have proposed a relative likelihood index to choose an optimal result from different runs. The index is based on the maximum likelihood evaluation theory and the independent subspace analysis. The feasibility of our method has been confirmed by experimental results.
Resumo:
Indium-tin-oxide (ITO)/n-GaN Schottky contacts were prepared by e-beam evaporation at 200 degrees C under various partial pressures of oxygen. X-ray photoemission spectroscopy and positron beam measurements were employed to obtain chemical and structural information of the deposited ITO films. The results indicated that the observed variation in the reverse leakage current of the Schottky contact and the optical transmittance of the ITO films were strongly dependent on the quality of the ITO film. The high concentration of point defects at the ITO-GaN interface is suggested to be responsible for the large observed leakage current of the ITO/n-GaN Schottky contacts. (c) 2006 American Institute of Physics.
Resumo:
We report on the realization of GaAs/AlGaAs quantum cascade lasers with an emission wavelength of 9.1 mu m above the liquid nitrogen temperature. With optimal current injection window and ridge width of 24 and 60 mu m respectively, a peak output power more than 500 mW is achieved in pulsed mode operation. A low threshold current density J(th) = 2.6 kA/cm(2) gives the devices good lasing characteristics. In a drive frequency of 1 kHz, the laser operates up to 20% duty cycle.
Resumo:
Current-based microscopic defect analysis method such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current have been developed over the years at Brookhaven National Laboratory (BNL) for the defect characterizations on heavily irradiated (Phi(n) >= 10(13) n/cm(2)) high-resistivity (>= 2 k Omega cm) Si sensors/detectors. The conventional DLTS method using a capacitance transient is not valid on heavily irradiated high-resistivity Si sensors/detectors. A new optical filling method, using lasers with various wavelengths, has been applied, which is more efficient and suitable than the traditional voltage-pulse filling. Optimum defect-filling schemes and conditions have been suggested for heavily irradiated high-resistivity Si sensors/detectors. (c) 2006 Published by Elsevier Ltd.
Resumo:
This paper reports that lnAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current density of 3kA/cm(2) has been obtained for diodes with AlAs barriers of ten monolayers, and an In0.53Ga0.47As well of eight monolayers with four monolayers of InAs insert layer. The effects of growth interruption for smoothing potential barrier interfaces have been investigated by high resolution transmission electron microscope.