974 resultados para INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rate and direction of fibroblast locomotion is regulated by the formation of lamellipodia. In turn, lamellipodal formation is modulated in part by adhesion of that region of the cell from which the lamellipodia will extend or orginate. Cell surface $\beta$1,4-galactosyltransferase (GalTase) is one molecule that has been demonstrated to mediate cellular interactions with extracellular matrices. In the case of fibroblasts, GalTase must be associated with the actin cytoskeleton in order to mediate cellular adhesion to laminin. The object of this study was to determine how altering the quantity of GalTase capable of associating with the cytoskeleton impacts cell motility. Stably transfected cell lines were generated that have increased or decreased levels of surface GalTase relative to its cytoskeleton-binding sites. Biochemical analyses of these cells reveals that there is a limited number of sites on the cytoskeleton with which GalTase can interact. Altering the ratio of GalTase to its cytoskeleton binding sites does not affect the cells' abilities to spread, nor does it affect the localization of cytoskeletally-bound GalTase. It does, however, appear to interfere with stress fiber bundling. Cells with altered GalTase:cytoskeleton ratios change their polarity of laminin more frequently, as compared to controls. Therefore, the ectopic expression of GalTase cytoplasmic domains impairs a cell's ability to control the placement of lamellipodia. Cells were then tested for their ability to respond to a directional stimulus, a gradient of platelet-derived growth factor (PDGF). It was found that the ability of a cell to polarize in response to a gradient of PDGF is directly proportional to the quantity of GalTase associated with its cytoskeleton. Finally, the rate of unidirectional cell migration on laminin was found to be directly dependent upon surface GalTase expression and is inversely related to the ability of surface GalTase to interact with the cytoskeleton. It is therefore proposed that cytoskeletal assembly and lamellipodal formation can be regulated by the altering the ratio of cytoplasmic domains for specific matrix receptors, such as GalTase, relative to their cytoskeleton-binding sites. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metastasis is the complex process of tumor cell spread which is responsible for the majority of cancer-related deaths. Metastasis necessitates complex phenotypic changes, many of which are mediated by changes in the activities of cell surface molecules. One of these is cell surface $\beta$1,4-galactosyltransferase (GalTase), which is elevated on more highly metastatic cells. In this study, both molecular and biochemical methods were used to perturb and manipulate cell surface GalTase levels on K1735 murine melanoma cell lines in order to examine its function in metastasis.^ As expected, highly metastatic K1735 variants have higher cell surface GalTase than poorly metastatic variants. Stably transfected K1735 cell lines that overexpress surface GalTase were created. These cell lines were assayed for metastatic ability using an invasion chamber with Matrigel-coated filter inserts. Cells with increased surface GalTase were uniformly more invasive than neo transfected controls. With multiple cell lines, there was a direct correlation (r = 0.918) between surface GalTase activity and invasiveness. Homologous recombination was used to create K1735 cells with decreased levels of surface GalTase. These cells were uniformly less invasive than controls. Cell surface GalTase was inhibited using two different biochemical strategies. In both cases, inhibition of surface GalTase led to a decrease in in vivo metastatic ability of K1735 cells. This is the first direct experimental evidence addressing GalTase function in metastasis. These data provide several lines of independent evidence which show that cell surface GalTase facilitates invasion and metastasis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 5-HT3 receptor (5-HT3R) is an important ion channel responsible for the transmission of nerve impulses in the CNS and PNS that is activated by the endogenous agonist serotonin (5-hydroxytryptamine, 5-HT). 5-HT3R is the only serotonin receptor belonging to the Cys-loop superfamily of neurotransmitter receptors. Different structural biology approaches can be applied, such as crystallization and x-ray analysis. Nonetheless, characterizing the exact ligand binding site(s) of these dynamic receptors is still challenging. The use of photo-crosslinking probes is an alternative validated approach allowing identification of regions in the protein that are important for the binding of small molecules. We designed our probes based on the core structure of the 5-HT3R antagonist granisetron, a FDA approved drug used for the treatment of chemotherapy-induced nausea and vomiting. We synthesized a small library of photo-crosslinking probes by conjugating diazirines and benzophenones via various linkers to granisetron. We were able to obtain several compounds with diverse linker lengths and different photo-crosslinking moieties that show nanomolar binding affinity for the orthosteric binding site. Furthermore we established a stable h5-HT3R expressing cell line and a purification protocol to yield the receptor in a high purity. Several experiments showed unambiguously that we are able to photo-crosslink our probes with the receptor site-specifically. The functionalised protein was analysed by Western blot and MS-analysis. This yielded the exact covalent modification site, corroborating current ligand binding models derived from mutagenesis and docking studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant defences vary in space and time, which may translate into specific herbivore-foraging patterns and feeding niche differentiation. To date, little is known about the effect of secondary metabolite patterning on within-plant herbivore foraging. We investigated how variation in the major maize secondary metabolites, 1,4-benzoxazin-3-one derivatives (BXDs), affects the foraging behaviour of two leaf-chewing herbivores. BXD levels varied substantially within plants. Older leaves had higher levels of constitutive BXDs while younger leaves were consistently more inducible. These differences were observed independently of plant age, even though the concentrations of most BXDs declined markedly in older plants. Larvae of the well-adapted maize pest Spodoptera frugiperda preferred and grew better on young inducible leaves irrespective of plant age, while larvae of the generalist Spodoptera littoralis preferred and tended to grow better on old leaves. In BXD-free mutants, the differences in herbivore weight gain between old and young leaves were absent for both species, and leaf preferences of S. frugiperda were attenuated. In contrast, S. littoralis foraging patterns were not affected. In summary, our study shows that plant secondary metabolites differentially affect performance and foraging of adapted and non-adapted herbivores and thereby likely contribute to feeding niche differentiation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants differ greatly in their susceptibility to insect herbivory, suggesting both local adaptation and resistance tradeoffs. We used maize (Zea mays) recombinant inbred lines to map a quantitative trait locus (QTL) for the maize leaf aphid (Rhopalosiphum maidis) susceptibility to maize Chromosome 1. Phytochemical analysis revealed that the same locus was also associated with high levels of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) and low levels of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc). In vitro enzyme assays with candidate genes from the region of the QTL identified three O-methyltransferases (Bx10a-c) that convert DIMBOA-Glc to HDMBOA-Glc. Variation in HDMBOA-Glc production was attributed to a natural CACTA family transposon insertion that inactivates Bx10c in maize lines with low HDMBOA-Glc accumulation. When tested with a population of 26 diverse maize inbred lines, R. maidis produced more progeny on those with high HDMBOA-Glc and low DIMBOA-Glc. Although HDMBOA-Glc was more toxic to R. maidis than DIMBOA-Glc in vitro, BX10c activity and the resulting decline of DIMBOA-Glc upon methylation to HDMBOA-Glc were associated with reduced callose deposition as an aphid defense response in vivo. Thus, a natural transposon insertion appears to mediate an ecologically relevant trade-off between the direct toxicity and defense-inducing properties of maize benzoxazinoids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to defend themselves against arthropod herbivores, maize plants produce 1,4-benzoxazin-3-ones (BXs), which are stored as weakly active glucosides in the vacuole. Upon tissue disruption, BXs come into contact with β-glucosidases, resulting in the release of active aglycones and their breakdown products. While some aglycones can be reglucosylated by specialist herbivores, little is known about how they detoxify BX breakdown products. Here we report on the structure of an N-glucoside, 3-β-d-glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc), purified from Spodoptera frugiperda faeces. In vitro assays showed that MBOA-N-Glc is formed enzymatically in the insect gut using the BX breakdown product 6-methoxy-2-benzoxazolinone (MBOA) as precursor. While Spodoptera littoralis and S. frugiperda caterpillars readily glucosylated MBOA, larvae of the European corn borer Ostrinia nubilalis were hardly able to process the molecule. Accordingly, Spodoptera caterpillar growth was unaffected by the presence of MBOA, while O. nubilalis growth was reduced. We conclude that glucosylation of MBOA is an important detoxification mechanism that helps insects tolerate maize BXs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in (1→3,1→4)-β-D-glucan endohydrolase (EC 3.2.1.73) protein levels were investigated in segments from second leaves of wheat (Triticum aestivum L.). The abundance of the enzyme protein markedly increased when leaf segments were incubated in the dark whereas the enzyme rapidly disappeared when dark-incubated segments were illuminated or fed with sucrose. Addition of cycloheximide (CHI) to the incubation medium led to the disappearance of previously synthesized (1→3,1→4)-β-glucanase and suppressed the dark-induced accumulation indicating that the enzyme was rather unstable. The degradation of (1→3,1→4)-β-glucanase was analyzed without the interference of de-novo synthesis in intercellular washing fluid (IWF). The loss of the enzyme protein during incubation of IWF (containing naturally present peptide hydrolases) indicated that the stability increased from pH 4 to pH 7 and that an increase in the temperature from 25 to 35 °C considerably decreased the stability. Chelating divalent cations in the IWF with o-phenanthroline also resulted in a lowered stability of the enzyme. A strong temperature effect in the range from 25 to 35 °C was also observed in wheat leaf segments. Diurnal changes in (1→3,1→4)-β-glucanase activity were followed in intact second leaves from young wheat plants. At the end of the dark period, the activity was high but constantly decreased during the light phase and remained low if the light period was extended. Activity returned to the initial level during a 10-h dark phase. During a diurnal cycle, changes in (1→3,1→4)-β-glucanase activity were associated with reciprocal changes in soluble carbohydrates. The results suggest that the synthesis and the proteolytic degradation of an apoplastic enzyme may rapidly respond to changing environmental conditions.