978 resultados para INDUCED GENOMIC INSTABILITY
Resumo:
The integral diaphragm pressure transducer consists of a diaphragm machined from precipitation hardened martensitic (APX4) steel. Its performance is quite significant as it depends upon various factors such as mechanical properties including induced residual stress levels, metallurgical and physical parameters due to different stages of processing involved. Hence, the measurement and analysis of residual stress becomes very important from the point of in-service assessment of a component. In the present work, the stress measurements have been done using the X-ray diffraction (XRD) technique, which is a non-destructive test (NDT). This method is more reliable and widely used compared to the other NDT techniques. The metallurgical aspects have been studied by adopting the conventional metallographic practices including examination of microstructure using light microscope. The dimensional measurements have been carried out using dimensional gauge. The results of the present investigation reveals that the diaphragm material after undergoing series of realization processes has yielded good amount of retained austenite in it. Also, the presence of higher compressive stresses induced in the transducer results in non-linearity, zero shift and dimensional instability. The problem of higher retained austenite content and higher compressive stress have been overcome by adopting a new realization process involving machining and cold and hot stabilization soak which has brought down the retained austenite content to about 5–6% and acceptable level of compressive stress in the range −100 to −150 MPa with fine tempered martensitic phase structure and good dimensional stability. The new realization process seems to be quite effective in terms of controlling retained austenite content, residual stress, metallurgical phase as well as dimensional stability and this may result in minimum zero shift of the diaphragm system.
Resumo:
The systemic autoinflammatory disorders are a group of rare diseases characterized by periodically recurring episodes of acute inflammation and a rise in serum acute phase proteins, but with no signs of autoimmunity. At present eight hereditary syndromes are categorized as autoinflammatory, although the definition has also occasionally been extended to other inflammatory disorders, such as Crohn s disease. One of the autoinflammatory disorders is the autosomally dominantly inherited tumour necrosis factor receptor-associated periodic syndrome (TRAPS), which is caused by mutations in the gene encoding the tumour necrosis factor type 1 receptor (TNFRSF1A). In patients of Nordic descent, cases of TRAPS and of three other hereditary fevers, hyperimmunoglobulinemia D with periodic fever syndrome (HIDS), chronic infantile neurologic, cutaneous and articular syndrome (CINCA) and familial cold autoinflammatory syndrome (FCAS), have been reported, TRAPS being the most common of the four. Clinical characteristics of TRAPS are recurrent attacks of high spiking fever, associated with inflammation of serosal membranes and joints, myalgia, migratory rash and conjunctivitis or periorbital cellulitis. Systemic AA amyloidosis may occur as a sequel of the systemic inflammation. The aim of this study was to investigate the genetic background of hereditary periodically occurring fever syndromes in Finnish patients, to explore the reliability of determining serum concentrations of soluble TNFRSF1A and metalloproteinase-induced TNFRSF1A shedding as helpful tools in differential diagnostics, as well as to study intracellular NF-κB signalling in an attempt to widen the knowledge of the pathomechanisms underlying TRAPS. Genomic sequencing revealed two novel TNFRSF1A mutations, F112I and C73R, in two Finnish families. F112I was the first TNFRSF1A mutation to be reported in the third extracellular cysteine-rich domain of the gene and C73R was the third novel mutation to be reported in a Finnish family, with only one other TNFRSF1A mutation having been reported in the Nordic countries. We also presented a differential diagnostic problem in a TRAPS patient, emphasizing for the clinician the importance of differential diagnostic vigiliance in dealing with rare hereditary disorders. The underlying genetic disease of the patient both served as a misleading factor, which possibly postponed arrival at the correct diagnosis, but may also have predisposed to the pathologic condition, which led to a critical state of the patient. Using a method of flow cytometric analysis modified for the use on fresh whole blood, we studied intracellular signalling pathways in three Finnish TRAPS families with the F112I, C73R and the previously reported C88Y mutations. Evaluation of TNF-induced phosphorylation of NF-κB and p38, revealed low phosphorylation profiles in nine out of ten TRAPS patients in comparison to healthy control subjects. This study shows that TRAPS is a diagnostic possibility in patients of Nordic descent, with symptoms of periodically recurring fever and inflammation of the serosa and joints. In particular in the case of a family history of febrile episodes, the possibility of TRAPS should be considered, if an etiology of autoimmune or infectious nature is excluded. The discovery of three different mutations in a population as small as the Finnish, reinforces the notion that the extracellular domain of TNFRSF1A is prone to be mutated at the entire stretch of its cysteine-rich domains and not only at a limited number of sites, suggesting the absence of a founder effect in TRAPS. This study also demonstrates the challenges of clinical work in differentiating the symptoms of rare genetic disorders from those of other pathologic conditions and presents the possibility of an autoinflammatory disorder as being the underlying cause of severe clinical complications. Furthermore, functional studies of fresh blood leukocytes show that TRAPS is often associated with a low NF-κB and p38 phosphorylation profile, although low phosphorylation levels are not a requirement for the development of TRAPS. The aberrant signalling would suggest that the hyperinflammatory phenotype of TRAPS is the result of compensatory NF-κB-mediated regulatory mechanisms triggered by a deficiency of the innate immune response.
Resumo:
Formation of nanocrystalline TiN at low temperatures was demonstrated by combining Pulsed Laser Deposition (PLD) and ion implantation techniques. The Ti films of nominal thickness similar to 250 nm were deposited at a substrate temperature of 200 degrees C by ablating a high pure titanium target in UHV conditions using a nanosecond pulsed Nd:YAG laser operating at 1064 nm. These films were implanted with 100 keV N+ ions with fluence ranging from 1.0 x 10(16) ions/cm(2) to 1.0 x 10(17) ions/cm(2). The structural, compositional and morphological evolutions were tracked using Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectrometry (SIMS) and Atomic Force Microscopy (AFM), respectively. TEM analysis revealed that the as-deposited titanium film is an fcc phase. With increasing ion fluence, its structure becomes amorphous phase before precipitation of nanocrystalline fcc TiN phase. Compositional depth profiles obtained from SIMS have shown the extent of nitrogen concentration gradient in the implantation zone. Both as-deposited and ion implanted films showed much higher hardness as compared to the bulk titanium. AFM studies revealed a gradual increase in surface roughness leading to surface patterning with increase in ion fluence.
Resumo:
The occurrence of concomitant polymorphism in 3-fluoro-N-(3-fluorophenyl) benzamide has been identified to be due to the disorder in the crystal structure. Of the two modifications, the plate form (Form I) crystallizes in the monoclinic centrosymmetric space group C2/c with Z = 4, and the needle form (Form II) crystallizes in the noncentrosymmetric space group P21 with Z = 2. An interesting positional disorder at the bridging atoms in both forms holds the molecular conformation identical, while subtle variations brought by N−H···O hydrogen bonds along with weak C−H···F and F···F interactions result in packing polymorphism.
Resumo:
The lead based ferroelectric PbZr0.53Ti0.47O3 (PZT), (Pb0.90La0.10)TiO3 (PLT10) and (Pb0.80La0.20)TiO3 (PLT20) thin films, prepared by pulsed laser ablation technique, were studied for their response to the 70 MeV oxygen ion irradiation. The dielectric analysis, capacitance-voltage (C- V) and DC leakage current measurements were performed before and after the irradiation to high-energy oxygen ions. The irradiation produced considerable changes in the dielectric, C-V, leakage characteristics and induced some amount of amorphization. The PZT films showed partial recrystallization after a thermal annealing at 400 degrees C for 10 min. The phase transition temperature [T-c] of PLT20 increased from 115 degrees C to 120 degrees C. The DC conductivity measurements showed a shift in the onset of non-linear conduction region. The current density decreased by two orders of magnitude after irradiation. After annealing the irradiated films at a temperature of 400 degrees C for 10 min, the films partially regained the dielectric and electrical properties. The results are discussed in terms of the irradiation-induced amorphization, the pinning of the ferroelectric domains by trapped charges and the thermal annealing of the defects generated during the irradiation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Richard Lewontin proposed that the ability of a scientific field to create a narrative for public understanding garners it social relevance. This article applies Lewontin's conceptual framework of the functions of science (manipulatory and explanatory) to compare and explain the current differences in perceived societal relevance of genetics/genomics and proteomics. We provide three examples to illustrate the social relevance and strong cultural narrative of genetics/genomics for which no counterpart exists for proteomics. We argue that the major difference between genetics/genomics and proteomics is that genomics has a strong explanatory function, due to the strong cultural narrative of heredity. Based on qualitative interviews and observations of proteomics conferences, we suggest that the nature of proteins, lack of public understanding, and theoretical complexity exacerbates this difference for proteomics. Lewontin's framework suggests that social scientists may find that omics sciences affect social relations in different ways than past analyses of genetics.
Resumo:
Unexpected swelling induced in foundation soils can cause distress to structures founded on them. In this paper, the swelling of kaolinitic soils due to interaction with alkali solution has been reported. The induced swelling is attributed to the formation of new minerals, which has been confirmed by X-ray diffraction patters and SEM studies. To understand the effect of alkali concentration and duration of interaction, two series of consolidation experiments have been carried out. In series 1, the specimen were remoulded with water and inundated with alkali solutions and in series 2, the specimen were remoulded and inundated with same alkali solutions. A steep compression during loading cycle and no abnormal swelling during unloading cycle has been noticed for the specimen remoulded with water and inundated with 1 N NaOH solutions. The steep compression is due to the segregation or break down of clay minerals due to alkali interactions. In case of specimen inundated with 4 N NaOH solutions, abnormal swelling has been observed during unloading cycle of the consolidation test. New minerals are formed on interaction of soil with 4 N solution as confirmed by X-ray diffraction patterns. These minerals are known to have very fine pores and possess high water holding capacity. The differences in the amount of swelling of samples remoulded with water and remoulded with alkali solution are due to variations in the concentration of alkali and duration of interaction.
Resumo:
It is shown that pure exponential discs in spiral galaxies are capable of supporting slowly varying discrete global lopsided modes, which can explain the observed features of lopsidedness in the stellar discs. Using linearized fluid dynamical equations with the softened self-gravity and pressure of the perturbation as the collective effect, we derive self-consistently a quadratic eigenvalue equation for the lopsided perturbation in the galactic disc. On solving this, we find that the ground-state mode shows the observed characteristics of the lopsidedness in a galactic disc, namely the fractional Fourier amplitude A(1), increases smoothly with the radius. These lopsided patterns precess in the disc with a very slow pattern speed with no preferred sense of precession. We show that the lopsided modes in the stellar disc are long-lived because of a substantial reduction (approximately a factor of 10 compared to the local free precession rate) in the differential precession. The numerical solution of the equations shows that the groundstate lopsided modes are either very slowly precessing stationary normal mode oscillations of the disc or growing modes with a slow growth rate depending on the relative importance of the collective effect of the self-gravity. N-body simulations are performed to test the spontaneous growth of lopsidedness in a pure stellar disc. Both approaches are then compared and interpreted in terms of long-lived global m = 1 instabilities, with almost zero pattern speed.
Resumo:
To gain a better understanding of recent experiments on the turbulence-induced melting of a periodic array of vortices in a thin fluid film, we perform a direct numerical simulation of the two-dimensional Navier-Stokes equations forced such that, at low Reynolds numbers, the steady state of the film is a square lattice of vortices. We find that as we increase the Reynolds number, this lattice undergoes a series of nonequilibrium phase transitions, first to a crystal with a different reciprocal lattice and then to a sequence of crystals that oscillate in time. Initially, the temporal oscillations are periodic; this periodic behaviour becoming more and more complicated with increasing Reynolds number until the film enters a spatially disordered nonequilibrium statistical steady state that is turbulent. We study this sequence of transitions using fluid-dynamics measures, such as the Okubo-Weiss parameter that distinguishes between vortical and extensional regions in the flow, ideas from nonlinear dynamics, e.g. Poincare maps, and theoretical methods that have been developed to study the melting of an equilibrium crystal or the freezing of a liquid and that lead to a natural set of order parameters for the crystalline phases and spatial autocorrelation functions that characterize short- and long-range order in the turbulent and crystalline phases, respectively.
Resumo:
The differentiation of cytotrophoblasts into syncytiotrophoblasts in the placenta has been employed as a model to investigate stage specific expression as well as regulation of genes during this process. While the cytotrophoblasts are highly invasive and proliferative with relatively less capacity to synthesize pregnancy related proteins, the multinucleated syncytiotrophoblasts are non-proliferative and non-invasive. However, syncytiotrophoblasts are the site of synthesis of a variety of protein, peptide and steroid hormones as well as several growth factors. Both the freshly isolated cytotrophoblasts from human placenta as well as the BeWo cell, a choriocarcinoma cell line model which retain several characteristic of cytotrophoblasts has been employed by us to study regulation of differentiation. In the present study, we have employed the differential display RT-PCR analysis (DD-RT-PCR) to evaluate gene expression changes during Forskolin induced in vitro differentiation of BeWo cells. We have identified several genes which are differentially expressed during differentiation and the differential expression of 10 transcripts was confirmed by Northern blot analysis. Based on the identity of the transcripts an attempt has been made to relate the known function of the gene products, to changes observed during differentiation. Of the several transcripts, one of the transcripts, namely Secretory Leukocyte Protease Inhibitor (SLPI) which is known to have multiple functions was found to increase 15-fold in the syntiotrophoblast.
Resumo:
Cells of Paenibacillus polymyxa and their metabolic products such as bioproteins and exopolysaccharides could be effectively used in the separation of galena from chalcopyrite. While interaction with bacterial cells resulted in significant flocculation of both chalcopyrite and galena, treatment with bioproteins selectively flocculated only chalcopyrite, dispersing galena. Microbially-induced selective flocculation after conditioning with cells, bioproteins or exopolysaccharides resulted in efficient separation of chalcopyrite and galena from their mixtures. Prior interaction with bioproteins facilitated enhanced flotation of galena from chalcopyrite. The role of bacterial cells and bioreagents such as proteins and polysaccharides in mineral beneficiation is demonstrated.