886 resultados para Hybridization, Vegetable
Resumo:
Alimentary carbohydrate overload is a significant cause of laminitis in horses and is correlated with drastic shifts in the composition of hindgut microbiota. Equine hindgut streptococcal species (EHSS), predominantly Streptococcus lutetiensis, have been shown to be the most common microorganisms culturable from the equine caecum prior to the onset of laminitis. However, the inherent biases of culture-based methods are estimated to preclude up to 70% of the normal caecal microbiota. The objective of this study was to evaluate bacterial population shifts occurring in the equine caecum throughout the course of oligofructose-induced laminitis using several culture-independent techniques and to correlate these with caecal lactate, volatile fatty acid and degrees of polymerization 3-7 fructo-oligosaccharide concentrations. Our data conclusively show that of the total microbiota present in the equine hindgut, the EHSS S. lutetiensis is the predominant microorganism that proliferates prior to the onset of laminitis, utilizing oligofructose to produce large quantities of lactate. Population shifts in lactobacilli and Escherichia coli subpopulations occur secondarily to the EHSS population shifts, thus confirming that lactobacilli and coliforms have no role in laminitis. A large, curved, Gram-negative rod previously observed during the early phases of laminitis induction was most closely related to the Anaerovibrio genus and most likely represents a new, yet to be cultured, genus and species. Correlation of fluorescence in situ hybridization and quantitative real-time PCR results provide evidence supporting the hypothesis that laminitis is associated with the death en masse and rapid cell lysis of EHSS. If EHSS are lysed, liberated cellular components may initiate laminitis.
Resumo:
Population substructure and hybridization, among other factors, have the potential to cause erroneous associations in linkage disequilibrium (LD) mapping. Two closely related spotted gum eucalypts, Corymbia variegata and C. henryi (Myrtaceae) occur in sympatry in the east coast of Australia and potentially interbreed. They are morphologically similar but are distinguished as separate species based on capsule and foliage size. To determine whether they hybridize in nature and its implications for LD mapping, we investigated the level of molecular divergence between the two species at two sympatric locations separated by 300 kilometres. Very few individuals of intermediate morphology were identified, despite the two species occurring only metres apart. Analysis of genetic structure using 12 microsatellite loci showed that genetic differentiation between populations of the same species at different locations (FST = 0.07 for both species; p = 0.0001) was significantly higher than that observed between species at each location (mean FST = 0.02 and 0.04 for Cherry tree and Bunyaville respectively; p = 0.0001; all Mann-Whitney U-test p ≤ 0.01). No species-specific alleles or significant allele frequency differences were detected within a site, suggesting recurrent local gene flow between the two species. The lack of significant allele frequency differences implies no population stratification along taxonomic lines. This suggested that there is little concern for cryptic hybridization when sampling from sites of sympatry for LD mapping.
Resumo:
Most plant disease resistance (R) genes encode proteins with a nucleotide binding site and leucine-rich repeat structure (NBS-LRR). In this study, degenerate primers were used to amplify genomic NBS-type sequences from wild banana (Musa acuminata ssp. malaccensis) plants resistant to the fungal pathogen Fusarium oxysporum formae specialis (f. sp.) cubense (FOC) race 4. Five different classes of NBS-type sequences were identified and designated as resistance gene candidates (RGCs). The deduced amino acid sequences of the RGCs revealed the presence of motifs characteristic of the majority of known plant NBS-LRR resistance genes. Structural and phylogenetic analyses grouped the banana RGCs within the non-TIR (homology to Toll/interleukin-1 receptors) subclass of NBS sequences. Southern hybridization showed that each banana RGC is present in low copy number. The expression of the RGCs was assessed by RT-PCR in leaf and root tissues of plants resistant or susceptible to FOC race 4. RGC1, 3 and 5 showed a constitutive expression profile in both resistant and susceptible plants whereas no expression was detected for RGC4. Interestingly, RGC2 expression was found to be associated only to FOC race 4 resistant lines. This finding could assist in the identification of a FOC race 4 resistance gene.
Resumo:
As a first step to better targeting the activities of a project for improving management of western flower thrips, Frankliniella occidentialis, (WFT) in field grown vegetable crops, we surveyed growers, consultants and other agribusiness personnel in two regions of Queensland. Using face-to-face interviews, we collected data on key pests and measures used to manage them, the importance of WFT and associated viral diseases, sources of pest management information and additional skills and knowledge needed by growers and industry. Responses were similar in the two regions. While capsicum growers in one northern Queensland district had suffered serious losses from WFT damage in 2002, in general the pest was not seen as a major problem. In cucurbit crops, the silverleaf whitefly (Bemisia tabaci biotype B) was considered the most difficult insect pest to manage. Pest control tactics were largely based on pesticides although many respondents mentioned non-chemical methods such as good farm hygiene practices, control of weed hosts and regular crop monitoring, particularly when prompted. Respondents wanted to know more about pest identification, biology and damage, spray application and the best use of insecticides. Natural enemies were mentioned infrequently. Keeping up to date with available pesticide options, availability of new chemicals and options for a district-wide approach to managing pests emerged as key issues. Growers identified agricultural distributors, consultants, Queensland Department of Primary Industries staff, other growers and their own experience as important sources of information. Field days, workshops and seminars did not rank highly. Busy vegetable growers wanted these activities to be short and relevant, and preferred to be contacted by post and facsimile rather than email. In response to these results, we are focusing on three core, interrelated project extension strategies: (i) short workshops, seminars and farm walks to provide opportunities for discussion, training and information sharing with growers and their agribusiness advisors; (ii) communication via newsletters and information leaflets; (iii) support for commercialisation of services.
Resumo:
The efficacy of insecticides in controlling Helicoverpa spp., predominantly H. armigera (Hubner), on capsicum and zucchini was tested in small plot trials. Indoxacarb, methoxyfenozide, spinosad, emamectin benzoate and novaluron provided control, as measured by the percentage of damaged fruit, equal to or better than standard treatments of methomyl or methomyl alternated with methamidophos on capsicum. The Helicoverpa nucleopolyhedrovirus gave control equivalent to the standard treatment, as did Bacillus thuringiensis aizawai, but B. thuringiensis kurstaki was ineffective. Helicoverpa armigera larvae were present in zucchini flowers but did little damage to the fruit. None of the insecticides significantly reduced the percentage of damaged zucchini fruit compared with the untreated control. Bifenthrin, spinosad, emamectin benzoate and methoxyfenozide were effective in controlling larvae in flowers, while methomyl, B. thuringiensis aizawai, B. thuringiensis kurstaki and novaluron were not effective. Data indicated that all the insecticides effectively controlled larvae of Diaphania indica (Saunders), cucumber moth, in the zucchini flowers. There has been a limited range of insecticides available to manage Helicoverpa spp. in these vegetable crops, but these trials demonstrate the effectiveness of a number of newer insecticides that could be used and that would be compatible with integrated pest management programs in the crops.
Resumo:
Phosphocholine (PCho) is an important substituent of surface structures expressed by a number of bacterial pathogens. Its role in virulence has been investigated in several species, in which it has been shown to play a role in bacterial adhesion to mucosal surfaces, in resistance to antimicrobial peptides, or in sensitivity to complement-mediated killing. The lipopolysaccharide (LPS) structure of Pasteurella multocida strain Pm70, whose genome sequence is known, has recently been determined and does not contain PCho. However, LPS structures from the closely related, virulent P. multocida strains VP161 and X-73 were shown to contain PCho on their terminal galactose sugar residues. To determine if PCho was involved in the virulence of P. multocida, we used subtractive hybridization of the VP161 genome against the Pm70 genome to identify a four-gene locus (designated pcgDABC) which we show is required for the addition of the PCho residues to LPS. The proteins predicted to be encoded by pcgABC showed identity to proteins involved in choline uptake, phosphorylation, and nucleotide sugar activation of PCho. We constructed a P. multocida VP161 pcgC mutant and demonstrated that this strain produces LPS that lacks PCho on the terminal galactose residues. This pcgC mutant displayed reduced in vivo growth in a chicken infection model and was more sensitive to the chicken antimicrobial peptide fowlicidin-1 than the wild-type P. multocida strain
Resumo:
A reverse line blot hybridization (RLB) one-stage nested PCR (nPCR) for Anaplasma centrale and a nested PCR for Anaplasma marginale were used to detect infected cattle grazing within an endemic region in Israel. A novel set of PCR primers and oligonucleotide probes based on a 16S ribosomal RNA gene was designed for RLB detection of both Anaplasma species, and the performance of the molecular assays compared. The immunofluorescent antibody test (IFA) was used to detect antibodies to both Anaplasma species, whereas, a highly sensitive and specific competitive enzyme-linked immunosorbent assay (cELISA) was used to detect antibodies in A. centrale-vaccinated cattle. The RLB and the nested PCR procedures showed bacteremia with sensitivity of 50 infected erythrocytes per milliliter. Up to 93% of the A. centrale vaccinates carried specific antibodies that were detected by cELISA, and up to 71% of the vaccinated cattle were found to be naturally infected with A. marginale according to the PCR and the RLB assays. Nevertheless, no severe outbreaks of A. marginale infection occurred among vaccinated herds in this endemic region. It appears that both, molecular tools and serology are useful for evaluation of the vaccine efficacy. In the light of wide natural field infection with A. marginale, strong recommendations to continue the A. centrale vaccination program regime will continue until a new generation of non-blood-based vaccine will be developed.
Resumo:
Tephritid fruit flies (Diptera: Tephritidae) are considered by far the most important group of horticultural pests worldwide. Female fruit flies lay eggs directly into ripening fruit, where the maggots feed causing fruit loss. Each and every continent is plagued by a number of fruit fly pests, both indigenous as well as invasive ones, causing tremendous economic losses. In addition to the direct losses through damage, they can negatively impact commodity trade through restrictions to market access. The quarantine and regulatory controls put in place to manage them are expensive, while the on-farm control costs and loss of crop affect the general well-being of growers. These constraints can have huge implications on loss in revenues and limitations to developing fruit and vegetable-based agroindustries in developing, emergent and developed nations. Because fruit flies are a global problem, the study of their biology and management requires significant international attention to overcome the hurdles they pose. The Joint Food and Agriculture Organisation / International Atomic Energy Agency (FAO/IAEA) Programme on Nuclear Techniques in Food and Agriculture has been on the foreground in assisting Member States in developing and validating environment-friendly fruit fly suppression systems to support viable fresh fruit and vegetable production and export industries. Such international attention has resulted in the successful development and validation of a Sterile Insect Technique (SIT) package for the Mediterranean fruit fly. Although demands for R&D support with respect to Mediterranean fruit fly are diminishing due to successful integration of this package into sustainable control programmes against this pest in many countries, there were increasing demands from Member States in Africa, Asia and Latin America, to address other major fruit fly pests and a related, but sometimes neglected issue of tephritid species complexes of economic importance. Any research, whether it is basic or applied, requires a taxonomic framework that provides reliable and universally recognized entities and names. Among the currently recognized major fruit fly pests, there are groups of species whose morphology is very similar or identical, but biologically they are distinct species. As such, some insect populations that are grouped taxonomically within the same pest species, display different biological and genetic traits and show reproductive isolation which suggest that they are different species. On the other hand, different species may have been taxonomically described, but there may be doubt as to whether they actually represent distinct biological species or merely geographical variants of the same species. This uncertain taxonomic status has practical implications on the effective development and use of the SIT against such complexes, particularly at the time of determining which species to mass-rear, and significantly affects international movement of fruit and vegetables through the establishment of trade barriers to important agricultural commodities which are hosts to these pest tephritid species...
Resumo:
A stretch of 71 nucleotides in a 1.2 kilobase pair Pst I fragment of rice DNA was identified as tRNA~ gene by hybridization and nucleotide sequence analyses. The hybridization of genomic DNA with the tRNA gene showed that there are about 10 glycine tRNA genes per diploid rice genome. The 3' and 5' internal control regions, where RNA polymerase III and transcription factors bind, were found to be present in the coding sequence. The gene was transcribed into a 4S product in an yeast cell-free extract. The substitution of 5' internal control region with analogous sequences from either M13mpl9 or M13mpl8 DNA did not affect the transcription of the gene in vitro. The changes in three highly conserved nucleotides in the consensus 5' internal control region (RGYNNARYGG; R = purine, Y = pyrimidine, N = any nucleotide) did not affect transcription showing that these nucleotides are not essential for promotion of transcription. There were two 16 base pair repeats, 'TGTTTGTTTCAGCTTA' at - 130 and - 375 positions upstream from the start of the gene. Deletion of 5' flanking sequences including the 16 base pair repeat at - 375 showed increased transcription indicating that these sequences negatively modulate the expression of the gene.
Resumo:
An integrated pest management (IPM) strategy was developed to manage infestations of mould mite Tyrophagus putrescentiae (Schrank) in stored animal feed, due to the increasing importance of these mites as pests of feed processing and storage facilities in Australia. This strategy involved several aspects such as limiting the moisture content of the processed feed to 12%, admixing vegetable oil to some feed (2% w/w), strict hygiene practice in and around the processing and storage facility, and rejection of infested grain at the receiving point. Additionally, seven contact insecticides and the fumigant phosphine were evaluated for their effectiveness against the mould mite to assess their potential integration into the IPM strategy. Among them, pyrethrin synergised with piperonyl butoxide, the insect growth regulator s-methoprene and a newly developed bacterium-based material spinosad controlled the mites. Moreover, the fumigant phosphine at 1 mg/litre over a six days exposure period also controlled these mites. So far, the IPM strategy, without any involvement of insecticides or fumigant has resulted in a complete eradication of the mite population in this particular case of stored animal feed.
Resumo:
1. The conservation status of the dingo Canis familiaris dingo is threatened by hybridization with the domestic dog C. familiaris familiaris. A practical method that can estimate the different levels of hybridization in the field is urgently required so that animals below a specific threshold of dingo ancestry (e.g. 1/4 or 1/2 dingoes) can reliably be identified and removed from dingo populations. 2. Skull morphology has been traditionally used to assess dingo purity, but this method does not discriminate between the different levels of dingo ancestry in hybrids. Furthermore, measurements can only be reliably taken from the skulls of dead animals. 3. Methods based on the analysis of variation in DNA are able to discriminate between the different levels of hybridization, but the validity of this method has been questioned because the materials currently used as a reference for dingoes are from captive animals of unproven genetic purity. The use of pre-European materials would improve the accuracy of this method, but suitable material has not been found in sufficient quantity to develop a reliable reference population. Furthermore, current methods based on DNA are impractical for the field-based discrimination of hybrids because samples require laboratory analysis. 4. Coat colour has also been used to estimate the extent of hybridization and is possibly the most practical method to apply in the field. However, this method may not be as powerful as genetic or morphological analyses because some hybrids (e.g. Australian cattle dog × dingo) are similar to dingoes in coat colour and body form. This problem may be alleviated by using additional visual characteristics such as the presence/absence of ticking and white markings.
Resumo:
Hybridization is an important biological phenomenon that can be used to understand the evolutionary process of speciation of plants and their associated pests and diseases. Interactions between hybrid plants and the herbivores of the parental taxa may be used to elucidate the various cues being used by the pests for host location or other processes. The chemical composition of plants, and their physical foliar attributes, including leaf thickness, trichome density, moisture content and specific leaf weight were compared between allopatric pure and commercial hybrid species of Corymbia, an important subtropical hardwood taxon. The leaf-eating beetle Paropsis atomaria, to which the pure taxa represented host (C. citriodora subsp. variegata) and non-host (C. torelliana) plants, was used to examine patterns of herbivory in relation to these traits. Hybrid physical foliar traits, chemical profiles, and field and laboratory beetle feeding preference, while showing some variability, were generally intermediate to those exhibited by parent taxa, thus suggesting an additive inheritance pattern. The hybrid susceptibility hypothesis was not supported by our field or laboratory studies, and there was no strong relationship between adult preference and larval performance. The most-preferred adult host was the sympatric taxon, although this species supported the lowest larval survival, while the hybrid produced significantly smaller pupae than the pure species. The results are discussed in relation to plant chemistry and physical characteristics. The findings suggest a chemical basis for host selection behavior and indicate that it may be possible to select for resistance to this insect pest in these commercially important hardwood trees.
Resumo:
Radishes are most commonly consumed as a root vegetable, although radish leaves are occasionally used in salads and cooking. While both the radish root and shoot contain glucosinolates with anti-cancer potential, the glucosinolate profile of the root and the shoot are very different. Whereas the root contains mainly glucodehydroerucin (2.8 mol/gFW) (also known as glucoraphasatin), the main glucosinolate components of the shoot are glucoraphanin (2.8 mol/gFW) and glucoraphenin (2.1 mol/gFW). Upon hydrolysis, the latter glucosinolates produce sulforaphane and sulforaphene respectively, both potent inducers of mammalian phase 2 enzymes. Previously, radishes have been dismissed as having minimal anti-cancer potential based on studies with radish roots. However, depending on the cultivar, radish shoots can have up to 45 times the capacity of roots to induce phase 2 enzymes. In fact, shoots of a number of radish cultivars (eg. 'Black Spanish') have similar or greater anti-cancer potential than broccoli florets, a vegetable that has received considerable interest in this area.
Resumo:
Although the applications of Auger electron spectroscopy in surface analysis have by far outweighed its use as a tool to investigate electron states of solids and surfaces, there are a variety of situations where Auger spectroscopy provides unique information. Apart from the chemical shifts, Auger intensities are useful in determining the number of d-electron states in transition metal systems. Auger spectroscopy is a good probe to investigate the surface oxidation of metals. In addition to the intra-atomic Auger transitions, inter-atomic transitions observed in oxides and other systems reveal the nature of electron states of surfaces. Charge-transfer and hybridization effects in alloys are also usefully studied by Auger spectroscopy. Auger electron spectroscopy has not been a popular technique to investigate adsorption of molecules on surfaces, but the technique is useful to obtain fingerprints of surface species.
Resumo:
Insecticides are used by growers to control Frankliniella occidentalis (western flower thrips) in Australian vegetable crops. However, limited information was available on the efficacy of some insecticides used against F. occidentalis and data on new insecticides that could be included in a resistance management program were required. The efficacy of 16 insecticides in controlling F. occidentalis was tested in four small plot trials in chillies and capsicums. Spinosad, fipronil and methamidophos were effective against adults and larvae. Spirotetramat had no efficacy against adults but was very effective against larvae. Pyridalyl was moderately effective against larvae. Methidathion showed limited effectiveness. Abamectin, amorphous silica, bifenthrin, chlorpyrifos, dimethoate, emamectin benzoate, endosulfan, imidacloprid, methomyl and insecticidal soap were not effective. Laboratory bioassays on F. occidentalis collected from the field trials showed resistance to bifenthrin but not to the other insecticides tested. The trials demonstrated that some insecticides permitted for use against F. occidentalis are not effective and identified a number of insecticides, including the new ones spirotetramat and pyridalyl, that are effective and that could be used to manage the pest within a resistance management program.