909 resultados para Human-Machine Interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decades drug discovery practice has escaped from the complexity of the formerly used phenotypic screening in animals to focus on assessing drug effects on isolated protein targets in the search for drugs that exclusively and potently hit one selected target, thought to be critical for a given disease, while not affecting at all any other target to avoid the occurrence of side-effects. However, reality does not conform to these expectations, and, conversely, this approach has been concurrent with increased attrition figures in late-stage clinical trials, precisely due to lack of efficacy and safety. In this context, a network biology perspective of human disease and treatment has burst into the drug discovery scenario to bring it back to the consideration of the complexity of living organisms and particularly of the (patho)physiological environment where protein targets are (mal)functioning and where drugs have to exert their restoring action. Under this perspective, it has been found that usually there is not one but several disease-causing genes and, therefore, not one but several relevant protein targets to be hit, which do not work on isolation but in a highly interconnected manner, and that most known drugs are inherently promiscuous. In this light, the rationale behind the currently prevailing single-target-based drug discovery approach might even seem a Utopia, while, conversely, the notion that the complexity of human disease must be tackled with complex polypharmacological therapeutic interventions constitutes a difficult-torefuse argument that is spurring the development of multitarget therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TWEAK (TNF homologue with weak apoptosis-inducing activity) and Fn14 (fibroblast growth factor-inducible protein 14) are members of the tumor necrosis factor (TNF) ligand and receptor super-families. Having observed that Xenopus Fn14 cross-reacts with human TWEAK, despite its relatively low sequence homology to human Fn14, we examined the conservation in tertiary fold and binding interfaces between the two species. Our results, combining NMR solution structure determination, binding assays, extensive site-directed mutagenesis and molecular modeling, reveal that, in addition to the known and previously characterized β-hairpin motif, the helix-loop-helix motif makes an essential contribution to the receptor/ligand binding interface. We further discuss the insight provided by the structural analyses regarding how the cysteine-rich domains of the TNF receptor super-family may have evolved over time. DATABASE: Structural data are available in the Protein Data Bank/BioMagResBank databases under the accession codes 2KMZ, 2KN0 and 2KN1 and 17237, 17247 and 17252. STRUCTURED DIGITAL ABSTRACT: TWEAK binds to hFn14 by surface plasmon resonance (View interaction) xeFn14 binds to TWEAK by enzyme linked immunosorbent assay (View interaction) TWEAK binds to xeFn14 by surface plasmon resonance (View interaction) hFn14 binds to TWEAK by enzyme linked immunosorbent assay (View interaction).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some cancer patients mount spontaneous T- and B-cell responses against their tumor cells. Autologous tumor reactive CD8 cytolytic T lymphocyte (CTL) and CD4 T-cell clones as well as antibodies from these patients have been used for the identification of genes encoding the target antigens. This knowledge opened the way for new approaches to the immunotherapy of cancer. In this review, we describe the characterization of the structure-function properties of the melanocyte/melanoma tumor antigen Melan-A/MART-1, the assessment of the T-cell repertoire available against this antigen in healthy individuals, and the analysis of naturally acquired and/or vaccine-induced CTL responses to this antigen in patients with metastatic melanoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les plantes sont essentielles pour les sociétés humaines. Notre alimentation quotidienne, les matériaux de constructions et les sources énergétiques dérivent de la biomasse végétale. En revanche, la compréhension des multiples aspects développementaux des plantes est encore peu exploitée et représente un sujet de recherche majeur pour la science. L'émergence des technologies à haut débit pour le séquençage de génome à grande échelle ou l'imagerie de haute résolution permet à présent de produire des quantités énormes d'information. L'analyse informatique est une façon d'intégrer ces données et de réduire la complexité apparente vers une échelle d'abstraction appropriée, dont la finalité est de fournir des perspectives de recherches ciblées. Ceci représente la raison première de cette thèse. En d'autres termes, nous appliquons des méthodes descriptives et prédictives combinées à des simulations numériques afin d'apporter des solutions originales à des problèmes relatifs à la morphogénèse à l'échelle de la cellule et de l'organe. Nous nous sommes fixés parmi les objectifs principaux de cette thèse d'élucider de quelle manière l'interaction croisée des phytohormones auxine et brassinosteroïdes (BRs) détermine la croissance de la cellule dans la racine du méristème apical d'Arabidopsis thaliana, l'organisme modèle de référence pour les études moléculaires en plantes. Pour reconstruire le réseau de signalement cellulaire, nous avons extrait de la littérature les informations pertinentes concernant les relations entre les protéines impliquées dans la transduction des signaux hormonaux. Le réseau a ensuite été modélisé en utilisant un formalisme logique et qualitatif pour pallier l'absence de données quantitatives. Tout d'abord, Les résultats ont permis de confirmer que l'auxine et les BRs agissent en synergie pour contrôler la croissance de la cellule, puis, d'expliquer des observations phénotypiques paradoxales et au final, de mettre à jour une interaction clef entre deux protéines dans la maintenance du méristème de la racine. Une étude ultérieure chez la plante modèle Brachypodium dystachion (Brachypo- dium) a révélé l'ajustement du réseau d'interaction croisée entre auxine et éthylène par rapport à Arabidopsis. Chez ce dernier, interférer avec la biosynthèse de l'auxine mène à la formation d'une racine courte. Néanmoins, nous avons isolé chez Brachypodium un mutant hypomorphique dans la biosynthèse de l'auxine qui affiche une racine plus longue. Nous avons alors conduit une analyse morphométrique qui a confirmé que des cellules plus anisotropique (plus fines et longues) sont à l'origine de ce phénotype racinaire. Des analyses plus approfondies ont démontré que la différence phénotypique entre Brachypodium et Arabidopsis s'explique par une inversion de la fonction régulatrice dans la relation entre le réseau de signalisation par l'éthylène et la biosynthèse de l'auxine. L'analyse morphométrique utilisée dans l'étude précédente exploite le pipeline de traitement d'image de notre méthode d'histologie quantitative. Pendant la croissance secondaire, la symétrie bilatérale de l'hypocotyle est remplacée par une symétrie radiale et une organisation concentrique des tissus constitutifs. Ces tissus sont initialement composés d'une douzaine de cellules mais peuvent aisément atteindre des dizaines de milliers dans les derniers stades du développement. Cette échelle dépasse largement le seuil d'investigation par les moyens dits 'traditionnels' comme l'imagerie directe de tissus en profondeur. L'étude de ce système pendant cette phase de développement ne peut se faire qu'en réalisant des coupes fines de l'organe, ce qui empêche une compréhension des phénomènes cellulaires dynamiques sous-jacents. Nous y avons remédié en proposant une stratégie originale nommée, histologie quantitative. De fait, nous avons extrait l'information contenue dans des images de très haute résolution de sections transverses d'hypocotyles en utilisant un pipeline d'analyse et de segmentation d'image à grande échelle. Nous l'avons ensuite combiné avec un algorithme de reconnaissance automatique des cellules. Cet outil nous a permis de réaliser une description quantitative de la progression de la croissance secondaire révélant des schémas développementales non-apparents avec une inspection visuelle classique. La formation de pôle de phloèmes en structure répétée et espacée entre eux d'une longueur constante illustre les bénéfices de notre approche. Par ailleurs, l'exploitation approfondie de ces résultats a montré un changement de croissance anisotropique des cellules du cambium et du phloème qui semble en phase avec l'expansion du xylème. Combinant des outils génétiques et de la modélisation biomécanique, nous avons démontré que seule la croissance plus rapide des tissus internes peut produire une réorientation de l'axe de croissance anisotropique des tissus périphériques. Cette prédiction a été confirmée par le calcul du ratio des taux de croissance du xylème et du phloème au cours de développement secondaire ; des ratios élevés sont effectivement observés et concomitant à l'établissement progressif et tangentiel du cambium. Ces résultats suggèrent un mécanisme d'auto-organisation établi par un gradient de division méristématique qui génèrent une distribution de contraintes mécaniques. Ceci réoriente la croissance anisotropique des tissus périphériques pour supporter la croissance secondaire. - Plants are essential for human society, because our daily food, construction materials and sustainable energy are derived from plant biomass. Yet, despite this importance, the multiple developmental aspects of plants are still poorly understood and represent a major challenge for science. With the emergence of high throughput devices for genome sequencing and high-resolution imaging, data has never been so easy to collect, generating huge amounts of information. Computational analysis is one way to integrate those data and to decrease the apparent complexity towards an appropriate scale of abstraction with the aim to eventually provide new answers and direct further research perspectives. This is the motivation behind this thesis work, i.e. the application of descriptive and predictive analytics combined with computational modeling to answer problems that revolve around morphogenesis at the subcellular and organ scale. One of the goals of this thesis is to elucidate how the auxin-brassinosteroid phytohormone interaction determines the cell growth in the root apical meristem of Arabidopsis thaliana (Arabidopsis), the plant model of reference for molecular studies. The pertinent information about signaling protein relationships was obtained through the literature to reconstruct the entire hormonal crosstalk. Due to a lack of quantitative information, we employed a qualitative modeling formalism. This work permitted to confirm the synergistic effect of the hormonal crosstalk on cell elongation, to explain some of our paradoxical mutant phenotypes and to predict a novel interaction between the BREVIS RADIX (BRX) protein and the transcription factor MONOPTEROS (MP),which turned out to be critical for the maintenance of the root meristem. On the same subcellular scale, another study in the monocot model Brachypodium dystachion (Brachypodium) revealed an alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis. In the latter, increasing interference with auxin biosynthesis results in progressively shorter roots. By contrast, a hypomorphic Brachypodium mutant isolated in this study in an enzyme of the auxin biosynthesis pathway displayed a dramatically longer seminal root. Our morphometric analysis confirmed that more anisotropic cells (thinner and longer) are principally responsible for the mutant root phenotype. Further characterization pointed towards an inverted regulatory logic in the relation between ethylene signaling and auxin biosynthesis in Brachypodium as compared to Arabidopsis, which explains the phenotypic discrepancy. Finally, the morphometric analysis of hypocotyl secondary growth that we applied in this study was performed with the image-processing pipeline of our quantitative histology method. During its secondary growth, the hypocotyl reorganizes its primary bilateral symmetry to a radial symmetry of highly specialized tissues comprising several thousand cells, starting with a few dozens. However, such a scale only permits observations in thin cross-sections, severely hampering a comprehensive analysis of the morphodynamics involved. Our quantitative histology strategy overcomes this limitation. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with an automated cell type recognition algorithm, it allows precise quantitative characterization of vascular development and reveals developmental patterns that were not evident from visual inspection, for example the steady interspace distance of the phloem poles. Further analyses indicated a change in growth anisotropy of cambial and phloem cells, which appeared in phase with the expansion of xylem. Combining genetic tools and computational modeling, we showed that the reorientation of growth anisotropy axis of peripheral tissue layers only occurs when the growth rate of central tissue is higher than the peripheral one. This was confirmed by the calculation of the ratio of the growth rate xylem to phloem throughout secondary growth. High ratios are indeed observed and concomitant with the homogenization of cambium anisotropy. These results suggest a self-organization mechanism, promoted by a gradient of division in the cambium that generates a pattern of mechanical constraints. This, in turn, reorients the growth anisotropy of peripheral tissues to sustain the secondary growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticles (NPs) have gained a lot of interest in recent years due to their huge potential for applications in industry and medicine. Their unique properties offer a large number of attractive possibilities in the biomedical field, providing innovative tools for diagnosis of diseases and for novel therapies. Nevertheless, a deep understanding of their interactions with living tissues and the knowledge about their possible effects in the human body are necessary for the safe use of nanoparticulate formulations. The aim of this PhD project was to study in detail the interactions of therapeutic NPs with living cells, including cellular uptake and release, cellular localization and transport across the cell layers. Moreover, the effects of NPs on the cellular metabolic processes were determined using adapted in vitro assays. We evaluated the biological effect of several NPs potentially used in the biomedical field, including titanium dioxide (Ti02) NPs, 2-sized fluorescent silica NPs, ultrasmall superparamagnetic iron oxide (USPIO) NPs, either uncoated or coated with oleic acid or with polyvinylamine (aminoPVA) and poly(lactic-co-glycolic acid) - polyethylene-oxide (PLGA-PEO) NPs. We have found that the NPs were internalized by the cells, depending on their size, chemical composition, surface coating and also depending on the cell line considered. The uptake of aminoPVA-coated USPIO NPs by endothelial cells was enhanced in the presence of an external magnetic field. None of the tested USPIO NPs and silica NPs was transported across confluent kidney cell layers or brain endothelial cell layers, even in the presence of a magnetic field. However, in an original endothelium-glioblastoma barrier model which was developed, uncoated USPIO NPs were directly transferred from endothelial cells to glioblastoma cells. Following uptake, Ti02 NPs and uncoated USPIO NPs were released by the kidney cells, but not by the endothelial cells. Furthermore, these NPs induced an oxidative stress and autophagy in brain endothelial cells, possibly associated with their enhanced agglomeration in cell medium. A significant DNA damage was found in brain endothelial cells after their exposure to TiO2NPs. Altogether these results extend the existing knowledge about the effects of NPs on living cells with regard to their physicochemical characteristics and provide interesting tools for further investigation. The development of the in vitro toxicological assays with a special consideration for risk evaluation aims to reduce the use of animal experiments. -Les nanoparticules (NPs) présentent beaucoup d'intérêt dans le domaine biomédical et industriel. Leurs propriétés uniques offrent un grand nombre de possibilités de solutions innovantes pour le diagnostique et la thérapie. Cependant, pour un usage sûr des NPs il est nécessaire d'acquérir une connaissance approfondie des mécanismes d'interactions des NPs avec les tissus vivants et de leur effets sur le corps humain. Le but de ce projet de thèse était d'étudier en détail les mécanismes d'interactions de NPs thérapeutiques avec des cellules vivantes, en particulier les mécanismes d'internalisation cellulaire et leur subséquente sécrétion par les cellules, leur localisation cellulaire, leur transport à travers des couches cellulaires, et l'évaluation des effets de NPs sur le métabolisme cellulaire, en adaptant les méthodes existante d'évaluation cyto-toxico logique s in vitro. Pour ces expériences, les effets biologiques de nanoparticules d'intérêt thérapeutique, telles que des NPs d'oxyde de titane (TiO2), des NPs fluorescents de silicate de 2 tailles différentes, des NPs, d'oxyde de fer super-para-magnétiques ultra-petites (USPIO), soit non- enrobées soit enrobées d'acide oléique ou de polyvinylamine (aminoPVA), et des NPs d'acide poly(lactique-co-glycolique)-polyethylene-oxide (PLGA-PEO) ont été évalués. Les résultats ont démontré que les NPs sont internalisées par les cellules en fonction de leur taille, composition chimique, enrobage de surface, et également du type de cellules utilisées. L'internalisation cellulaire des USPIO NPs a été augmentée en présence d'un aimant externe. Aucune des NPs de fer et de silicate n'a été transportée à travers des couches de cellules épithéliales du rein ou endothéliales du cerveau, même en présence d'un aimant. Cependant, en développant un modèle original de barrière endothélium-glioblastome, un transfert direct de NPs d'oxyde de fer de cellule endothéliale à cellule de glioblastome a été démontré. A la suite de leur internalisation les NPs d'oxyde de fer et de titane sont relâchées par des cellules épithéliales du rein, mais pas des cellules endothéliales du cerveau. Dans les cellules endothéliales du cerveau ces NPs induisent en fonction de leur état d'agglomération un stress oxydatif et des mécanismes d'autophagie, ainsi que des dommages à l'ADN des cellules exposées aux NPs d'oxyde de titane. En conclusion, les résultats obtenus élargissent les connaissances sur les effets exercés par des NPs sur des cellules vivantes et ont permis de développer les outils expérimentaux pour étudier ces effets in vitro, réduisant ainsi le recours à des expériences sur animaux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image filtering is a highly demanded approach of image enhancement in digital imaging systems design. It is widely used in television and camera design technologies to improve the quality of an output image to avoid various problems such as image blurring problem thatgains importance in design of displays of large sizes and design of digital cameras. This thesis proposes a new image filtering method basedon visual characteristics of human eye such as MTF. In contrast to the traditional filtering methods based on human visual characteristics this thesis takes into account the anisotropy of the human eye vision. The proposed method is based on laboratory measurements of the human eye MTF and takes into account degradation of the image by the latter. This method improves an image in the way it will be degraded by human eye MTF to give perception of the original image quality. This thesis gives a basic understanding of an image filtering approach and the concept of MTF and describes an algorithm to perform an image enhancement based on MTF of human eye. Performed experiments have shown quite good results according to human evaluation. Suggestions to improve the algorithm are also given for the future improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human"s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human"s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The death-inducing receptor Fas is activated when cross-linked by the type II membrane protein Fas ligand (FasL). When human soluble FasL (sFasL, containing the extracellular portion) was expressed in human embryo kidney 293 cells, the three N-linked glycans of each FasL monomer were found to be essential for efficient secretion. Based on the structure of the closely related lymphotoxin alpha-tumor necrosis factor receptor I complex, a molecular model of the FasL homotrimer bound to three Fas molecules was generated using knowledge-based protein modeling methods. Point mutations of amino acid residues predicted to affect the receptor-ligand interaction were introduced at three sites. The F275L mutant, mimicking the loss of function murine gld mutation, exhibited a high propensity for aggregation and was unable to bind to Fas. Mutants P206R, P206D, and P206F displayed reduced cytotoxicity toward Fas-positive cells with a concomitant decrease in the binding affinity for the recombinant Fas-immunoglobulin Fc fusion proteins. Although the cytotoxic activity of mutant Y218D was unaltered, mutant Y218R was inactive, correlating with the prediction that Tyr-218 of FasL interacts with a cluster of three basic amino acid side chains of Fas. Interestingly, mutant Y218F could induce apoptosis in murine, but not human cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glioblastoma (GBM) is the most common and most aggressive malignant primary brain tumour. Despite the aggressiveness of the applied therapy, the prognosis remains poor with a median survival to of about 15 months. It is important to identify new candidate genes that could have clinical application in this disease. Previous gene expression studies from human GBM samples in our laboratory, revealed Ubiquitin Specific Peptidase 15 (USP15) as a gene with low expression, significantly associated with genomic deletions of the chromosomal region encompassing the USP15 locus. USP15 belongs to the ubiquitin-specific protease (USPs) family of which the main role is the reversion of ubiquitination and thereby stabilization of substrates. Previously, USP15 has been suggested to have a tumour suppressor function via its substrates APC and Caspase 3. We established GBM cell lines that stably express USP15 wt or its catalytic mutant. USP15 expression impairs cell growth by inhibiting cell cycle progression. On the other hand USP15 depletion in GBM cell lines induces cell cycle progression and proliferation. In order to identify the molecular pathways in which USP15 is implicated we aimed to identify protein-binding partners in the GBM cell line LN-229 by Mass spectrometry. As a result we identified eight new proteins that interact with USP15. These proteins are involved in important cellular processes like cytokinesis, cell cycle, cellular migration, and apoptosis. Three of these protein interactions were confirmed by co-immunoprecipitation in four GBM cell lines LN-229, LN428, LN18, LN-Z308. One of the binding proteins is HECTD1 E3 ligase of which the murine homologue promotes the APC-Axin interaction to negatively regulate the Wnt pathway. USP15 can de-ubiquitinate HECTD1 in the LN229 cell line while its depletion led to decrease of HECTD1 in GBM cell lines suggesting stabilizing role for USP15. Moreover, HECTD1 stable expression in LN229 inhibits cell cycle, while its depletion induces cell cycle progression. These results suggest that the USP15-HECTD1 interaction might enhance the antiproliferative effect of HECTD1 in GBM cell lines. Using the TOPflash/FOPflash luciferase system we showed that HECTD1 and USP15 overexpression can attenuate WNT pathway activity, and decrease the Axin2 expression. These data indicate that this new protein interaction of USP15 with HECTD1 results in negative regulation of the WNT pathway in GBM cell lines. Further investigation of the regulation of this interaction or of the protein binding network of HECTD1 in GBM may allow the discovery of new therapeutic targets. Finally PTPIP51 and KIF15 are the other two identified protein partners of USP15. These two proteins are involved in cell proliferation and their depletion in LN-229 cell line led to induction of cell cycle progression. USP15 displays a stabilizing role for them. Hence, these results show that the tumour suppressive role of USP15 in GBM cell line via different molecular mechanisms indicating the multidimensional function of USP15. Résumé Le glioblastome (GBM) est la tumeur primaire la plus fréquente et la plus agressive du cervau caractérisée par une survie médiane d'environ à 15 mois. De précédant travaux effectués au sein de notre laboratoire portant sur l'étude de l'expression de gènes pour des échantillons humains de GBM ont montré que le gène Ubiquitin Specific Peptidase 15 (USP1S) était significativement associée à une délétion locales à 25% des cas. Initialement, les substrats protéiques APC et CaspaseS de USP15 ont conduit à considérer cette protéine comme un suppresseur de tumeur. USP15 appartient à la famille protèsse spécifique de l'ubiquitine (USPs) dont le rôle principal est la réversion de l'ubiquitination et la stabilisation de substrats. Par conséquent, nous avons établi des lignées de cellules de glioblastome qui expriment de manière stable USP15 ou bien son mutant catalytique. Ainsi, nous avons ainsi démontré que l'expression de l'USP15 empêche la croissance cellulaire en inhibant la progression du cycle cellulaire. Inversement, la suppression de l'expression du gène USP15 dans les lignées cellulaires de glioblastome induit la progression du cycle cellulaire et la prolifération. Afin d'identifier les voies moléculaires dans lesquelles sont impliquées USP15, nous avons cherché à identifier les partenaires de liaisons protéiques par spectrométrie de masse dans la lignée cellulaire LN-229. Ainsi, huit nouvelles protéines interagissant avec USP15 ont été identifiées dont la ligase E3 HECTD1. L'homologue murin de Hectdl favorise l'interaction APC-Axin en régulant négativement la voie de signalisation de Wnt. USP15 interagit en désubiquitinant HECTD1 dans la lignée cellulaire LN-229 et provoque ainsi l'atténuation de l'activité de cette voie de signalisation. En conclusion, HECTD1, en interagissant avec USP15, joue un rôle de suppresseur de tumeur dans les lignées cellulaire de GBM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human"s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human"s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Replication of human immunodeficiency virus (HIV) requires base pairing of the reverse transcriptase primer, human tRNA(Lys3), to the viral RNA. Although the major complementary base pairing occurs between the HIV primer binding sequence (PBS) and the tRNA's 3'-terminus, an important discriminatory, secondary contact occurs between the viral A-rich Loop I, 5'-adjacent to the PBS, and the modified, U-rich anticodon domain of tRNA(Lys3). The importance of individual and combined anticodon modifications to the tRNA/HIV-1 Loop I RNA's interaction was determined. The thermal stabilities of variously modified tRNA anticodon region sequences bound to the Loop I of viral sub(sero)types G and B were analyzed and the structure of one duplex containing two modified nucleosides was determined using NMR spectroscopy and restrained molecular dynamics. The modifications 2-thiouridine, s(2)U(34), and pseudouridine, Psi(39), appreciably stabilized the interaction of the anticodon region with the viral subtype G and B RNAs. The structure of the duplex results in two coaxially stacked A-form RNA stems separated by two mismatched base pairs, U(162)*Psi(39) and G(163)*A(38), that maintained a reasonable A-form helix diameter. The tRNA's s(2)U(34) stabilized the interaction between the A-rich HIV Loop I sequence and the U-rich anticodon, whereas the tRNA's Psi(39) stabilized the adjacent mismatched pairs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mottling is one of the key defects in offset-printing. Mottling can be defined as unwanted unevenness of print. In this work, diameter of a mottle spot is defined between 0.5-10.0 mm. There are several types of mottling, but the reason behind the problem is still not fully understood. Several commercial machine vision products for the evaluation of print unevenness have been presented. Two of these methods used in these products have been implemented in this thesis. The one is the cluster method and the other is the band-pass method. The properties of human vision system have been taken into account in the implementation of these two methods. An index produced by the cluster method is a weighted sum of the number of found spots, and an index produced by band-pass method is a weighted sum of coefficients of variations of gray-levels for each spatial band. Both methods produce larger indices for visually poor samples, so they can discern good samples from the poor ones. The difference between the indices for good and poor samples is slightly larger produced by the cluster method. 11 However, without the samples evaluated by human experts, the goodness of these results is still questionable. This comparison will be left to the next phase of the project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To-date, there has been no effective chiral capillary electrophoresis-mass spectrometry (CE-MS) method reported for the simultaneous enantioseparation of the antidepressant drug, venlafaxine (VX) and its structurally-similar major metabolite, O-desmethylvenlafaxine (O-DVX). This is mainly due to the difficulty of identifying MS compatible chiral selector, which could provide both high enantioselectivity and sensitive MS detection. In this work, poly-sodium N-undecenoyl-L,L-leucylalaninate (poly-L,L-SULA) was employed as a chiral selector after screening several dipeptide polymeric chiral surfactants. Baseline separation of both O-DVX and VX enantiomers was achieved in 15min after optimizing the buffer pH, poly-L,L-SULA concentration, nebulizer pressure and separation voltage. Calibration curves in spiked plasma (recoveries higher than 80%) were linear over the concentration range 150-5000ng/mL for both VX and O-DVX. The limit of detection (LOD) was found to be as low as 30ng/mL and 21ng/mL for O-DVX and VX, respectively. This method was successfully applied to measure the plasma concentrations of human volunteers receiving VX or O-DVX orally when co-administered without and with indinivar therapy. The results suggest that micellar electrokinetic chromatography electrospray ionization-tandem mass spectrometry (MEKC-ESI-MS/MS) is an effective low cost alternative technique for the pharmacokinetics and pharmacodynamics studies of both O-DVX and VX enantiomers. The technique has potential to identify drug-drug interaction involving VX and O-DVX enantiomers while administering indinivar therapy.