947 resultados para Host-parasite relationships
Resumo:
The gall fly Cecidochares connexa (Diptera: Tephritidae) is a potential biological control agent for Chromolaena odorata in Australia. Its host specificity was determined against 18 species in the tribe Eupatorieae (Family Asteraceae) in which C. odorata belongs, in quarantine in Brisbane, Australia. Oviposition occurred and flies developed on only C. odorata and Praxelis clematidea, both of which are in the subtribe Praxelinae. P. clematidea is considered a weed outside tropical America. In both multiple-species-minus-C. odorata choice tests and single-species no-choice tests, the mean number of galls/plant was significantly greater on C. odorata (48 and 41, respectively) than on P. clematidea (2 and 9, respectively). There were also significantly more adults emerging from C. odorata (mean 129 and 169, respectively) in the two types of tests than from P. clematidea (1 and 8, respectively). Paired choice, multiple generation (continuation) and time dependent tests further clarified the extent that C. connexa could develop on P. clematidea. In these tests, the mean number of galls formed and the mean number of emerging adults were consistently less for P. clematidea than C. odorata and populations of C. connexa could not be maintained on P. clematidea. Galls were not seen on any other plant species tested. This study supports the results of host specificity testing conducted in seven other countries and confirms that C. connexa poses little risk to other plant species in Australia. C. connexa has been released in 10 countries and an application seeking approval to release in Australia has been submitted to the Australian Government.
Resumo:
Characterisation of a number of key wood properties utilising ‘state of the art’ tools was achieved for four commercial Australian hardwood species: Corymbia citriodora, Eucalyptus pilularis, Eucalyptus marginata and Eucalyptus obliqua. The wood properties were measured for input into microscopic (cellular level) and macroscopic (board level) vacuum drying models currently under development. Morphological characterisation was completed using a combination of ESEM, optical microscopy and a custom vector-based image analysis software. A clear difference in wood porosity, size, wall thickness and orientation was evident between species. Wood porosity was measured using a combination of fibre and vessel porosity. A highly sensitive microbalance and scanning laser micrometres were used to measure loss of moisture content in conjunction with directional shrinkage on micro-samples of E. obliqua to investigate the validity of measuring collapse-free shrinkage in very thin sections. Collapse-free shrinkage was characterised, and collapse propensity was verified when testing thicker samples. Desorption isotherms were calculated for each species using wood–water relations data generated from shrinkage experiments. Fibre geometry and wood shrinkage anisotropy were used to explain the observed difficulty in drying of the different species in terms of collapse and drying stress-related degrade.
Resumo:
Eight Cylindropuntia species have naturalised in Australia and pose serious economic, environmental and social impacts. Two biotypes of Dactylopius tomentosus have been used as bio-control agents to control different Cylindropuntia species. The host range of four additional biotypes of Dactylopius tomentosus from southern USA was investigated. Feeding and development were restricted to the genus Cylindropuntia. However, they showed differences in specificity within this genus and some biotypes discriminated between the provenances of C. rosea and C. tunicata. Efficacy trials were conducted to determine whether populations of each biotype could be sustained on the naturalised Cylindropuntia species and if these populations could retard the growth or kill these plants. The acanthocarpa biotype offers potential control of C. rosea (Lorne Station), while the cylindropuntia sp. biotype shows great potential to control C. rosea (Grawin). The cylindropuntia sp. biotype also had a high impact on C. kleiniae and C. imbricata, and a moderate impact on C. leptocaulis and C. prolifera. The acanthocarpa X echinocarpa biotype had its greatest impact on C. tunicata (Grawin), killing this plant in 18 weeks. A fourth biotype, leptocaulis, was damaging to some species, but was less effective than the other biotypes. Cylindropuntia spinosior is the only naturalised species in Australia where no effective biocontrol agent has been found.
Resumo:
Depending on their developmental stage in the life cycle, malaria parasites develop within or outside host cells, and in extremely diverse contexts such as the vertebrate liver and blood circulation, or the insect midgut and hemocoel. Cellular and molecular mechanisms enabling the parasite to sense and respond to the intra- and the extra-cellular environments are therefore key elements for the proliferation and transmission of Plasmodium, and therefore are, from a public health perspective, strategic targets in the fight against this deadly disease. The MALSIG consortium, which was initiated in February 2009, was designed with the primary objective to integrate research ongoing in Europe and India on i) the properties of Plasmodium signalling molecules, and ii) developmental processes occurring at various points of the parasite life cycle. On one hand, functional studies of individual genes and their products in Plasmodium falciparum (and in the technically more manageable rodent model Plasmodium berghei) are providing information on parasite protein kinases and phosphatases, and of the molecules governing cyclic nucleotide metabolism and calcium signalling. On the other hand, cellular and molecular studies are elucidating key steps of parasite development such as merozoite invasion and egress in blood and liver parasite stages, control of DNA replication in asexual and sexual development, membrane dynamics and trafficking, production of gametocytes in the vertebrate host and further parasite development in the mosquito. This article, which synthetically reviews such signalling molecules and cellular processes, aims to provide a glimpse of the global frame in which the activities of the MALSIG consortium will develop over the next three years.
Resumo:
The object of this study is a tailless internal membrane-containing bacteriophage PRD1. It has a dsDNA genome with covalently bound terminal proteins required for replication. The uniqueness of the structure makes this phage a desirable object of research. PRD1 has been studied for some 30 years during which time a lot of information has accumulated on its structure and life-cycle. The two least characterised steps of the PRD1 life-cycle, the genome packaging and virus release are investigated here. PRD1 shares the main principles of virion assembly (DNA packaging in particular) and host cell lysis with other dsDNA bacteriophages. However, this phage has some fascinating individual peculiarities, such as DNA packaging into a membrane vesicle inside the capsid, absence of apparent portal protein, holin inhibitor and procapsid expansion. In the course of this study we have identified the components of the DNA packaging vertex of the capsid, and determined the function of protein P6 in packaging. We managed to purify the procapsids for an in vitro packaging system, optimise the reaction and significantly increase its efficiency. We developed a new method to determine DNA translocation and were able to quantify the efficiency and the rate of packaging. A model for PRD1 DNA packaging was also proposed. Another part of this study covers the lysis of the host cell. As other dsDNA bacteriophages PRD1 has been proposed to utilise a two-component lysis system. The existence of this lysis system in PRD1 has been proven by experiments using recombinant proteins and the multi-step nature of the lysis process has been established.
Resumo:
The G20 Finance Ministers have the opportunity this weekend to endorse the initial recommendations of the OECD on how to address the global problem of multinational tax avoidance. The work of the OECD on the issue to date is substantial. Most notable is the adoption by many nations, including Australia, of the Common Reporting Standard for the automatic exchange of tax information. This standard will allow significant inroads to be made into tax avoidance, particularly by individuals sheltering money offshore. This is the first step in an ambitious tax reform program. There is a long way to go if we are to end the issue now known as Base Erosion and Profit Shifting (BEPS). This week’s release of the first of the OECD recommendations contains some positive signs that further advances will be made. It also recognises some hard truths.
Resumo:
The 3prime terminal 1255nt sequence of Physalis mottle virus (PhMV) genomic RNA has been determined from a set of overlapping cDNA clones. The open reading frame (ORF) at the 3prime terminus corresponds to the amino acid sequence of the coat protein (CP) determined earlier except for the absence of the dipeptide, Lys-Leu, at position 110-111. In addition, the sequence upstream of the CP gene contains the message coding for 178 amino acid residues of the C-terminus of the putative replicase protein (RP). The sequence downstream of the CP gene contains an untranslated region whose terminal 80 nucleotides can be folded into a characteristic tRNA-like structure. A phylogenetic tree constructed after aligning separately the sequence of the CP, the replicase protein (RP) and the tRNA-like structure determined in this study with the corresponding sequences of other tymoviruses shows that PhMV wrongly named belladonna mottle virus [BDMV(I)] is a separate tymovirus and not another strain of BDMV(E) as originally envisaged. The phylogenetic tree in all the three cases is identical showing that any subset of genomic sequence of sufficient length can be used for establishing evolutionary relationships among tymoviruses.
Resumo:
Life-history theory states that although natural selection would favour a maximisation of both reproductive output and life-span, such a combination can not be achieved in any living organism. According to life-history theory the reason for the fact that not all traits can be maximised simultaneously is that different traits compete with each other for resources. These relationships between traits that constrain the simultaneous evolution of two or more traits are called trade-offs. Therefore, during different life-stages an individual needs to optimise its allocation of resources to life-history components such as growth, reproduction and survival. Resource limitation acts on these traits and therefore investment in one trait, e.g. reproduction, reduces the resources available for investment in another trait, e.g. residual reproduction or survival. In this thesis I study how food resources during different stages of the breeding event affect reproductive decisions in the Ural owl (Strix uralensis) and the consequences of these decisions on parents and offspring. The Ural owl is a suitable study species for such studies in natural populations since they are long-lived, site-tenacious, and feed on voles. The vole populations in Fennoscandia fluctuate in three- to four-year cycles, which create a variable food environment for the Ural owls to cope with. The thesis gives new insight in reproductive costs and their consequences in natural animal populations with emphasis on underlying physiological mechanisms. I found that supplementary fed Ural owl parents invest supplemented food resources during breeding in own self-maintenance instead of allocating those resources to offspring growth. This investment in own maintenance instead of improving current reproduction had carry-over effects to the following year in terms of increased reproductive output. Therefore, I found evidence that reduced reproductive costs improves future reproductive performance. Furthermore, I found evidence for the underlying mechanism behind this carry-over effect of supplementary food on fecundity. The supplementary-fed parents reduced their feeding investment in the offspring compared to controls, which enabled the fed female parents to invest the surplus resources in parasite resistance. Fed female parents had lower blood parasite loads than control females and this effect lasted until the following year when also reproductive output was increased. Hence, increased investment in parasite resistance when resources are plentiful has the potential to mediate positive carry-over effects on future reproduction. I further found that this carry-over effect was only present when potentials for future reproduction were good. The thesis also provides new knowledge on resource limitation on maternal effects. I found that increased resources prior to egg laying improve the condition and health of Ural owl females and enable them to allocate more resources to reproduction than control females. These additional resources are not allocated to increase the number of offspring, but instead to improve the quality of each offspring. Fed Ural owl females increased the size of their eggs and allocated more health improving immunological components into the eggs. Furthermore, the increased egg size had long-lasting effects on offspring growth, as offspring from larger eggs were heavier at fledging. Limiting resources can have different short- and long-term consequences on reproductive decisions that affect both offspring number and quality. In long-lived organisms, such as the Ural owl, it appears to be beneficial in terms of fitness to invest in long breeding life-span instead of additional investment in current reproduction. In Ural owls, females can influence the phenotypic quality of the offspring by transferring additional resources to the eggs that can have long-lasting effects on growth.
Resumo:
Interactions among individuals give rise to both cooperation and conflict. Individuals will behave selfishly or altruistically depending on which gives the higher payoff. The reproductive strategies of many animals are flexible and several alternative tactics may be present from which the most suitable one is applied. Generally, alternative reproductive tactics may be defined as a response to competition from individuals of the same sex. These alternative reproductive tactics are means by which individuals may fine-tune their fitness to the reigning circumstances and which are shaped by the environment individuals are occupying as well as by the behaviour of other individuals sharing the environment. By employing such alternative ways of achieving reproductive output, individuals may alleviate competition from others. Conspecific brood parasitism (CBP) is an alternative reproductive strategy found in several egg laying animal groups, and it is especially common among waterfowl. Within this alternative reproductive strategy, four reproductive options can be identified. These four options represent a continuum from low reproductive effort coupled with low fitness returns, to high reproductive effort and consequently high benefits. It may not be evident how individuals should allocate reproductive effort between eggs laid in their own nest vs. in nests of others, however. Limited fecundity will constrain the number of eggs donated by a parasite, but also the tendency for hosts to accept parasitic eggs may affect the allocation decision. Furthermore, kinship, individual quality and the costs of breeding may play a role in complicating the allocation decision. In this thesis, I view the seemingly paradoxical effects of kinship on conflict resolution in the context of alternative reproductive tactics, examining the resulting features of cooperation and conflict. Conspecific brood parasitism sets the stage for investigating these questions. By using both empirical and theoretical approaches, I examine the nature of CBP in a brood parasitic duck, the Barrow's goldeneye (Bucephala islandica). The theoretical chapter of this thesis gives rise to four main conclusions. Firstly, variation in individual quality plays a central role in shaping breeding strategies. Secondly, kinship plays a central role in the evolution of CBP. Thirdly, egg recognition ability may affect the prevalence of parasitism. If egg recognition is perfect, higher relatedness between host and parasite facilitates CBP. Finally, I show that the relative costs of egg laying and post-laying care play a so far underestimated role in determining the prevalence of parasitism. The costs of breeding may outweigh possible inclusive fitness benefits accrued from receiving eggs from relatives. Several of the patterns brought out by the theoretical work are then confirmed empirically in the following chapters. Findings include confirmation of the central role of relatedness in determining the extent of parasitism as well as inducing a counterintuitive host clutch reduction. Furthermore, I demonstrate a cost of CBP inflicted on hosts, as well as results suggesting that host age reflects individual quality, affecting the ability to overcome costs inflicted by CBP. In summary, I demonstrate both theoretically and empirically the presence of cooperation and conflict in the interactions between conspecific parasites and their hosts. The field of CBP research has traditionally been divided, but the first steps have now been taken toward the acceptance of the opposite side of the divide. Especially the theoretical findings of chapter 1 offer the possibility to view seemingly contrasting results of various studies within the same framework, and may direct future research toward more general features underlying differences in the patterns of CBP between populations or species.
Resumo:
Salmonella enterica serovar Typhimurium is a common cause of gastroenteritis in humans and, occasionally, also causes systemic infection. During systemic infection an important characteristic of Salmonella is its ability to survive and replicate within macrophages. The outer membrane protease PgtE of S. enterica is a member of the omptin family of outer membrane aspartate proteases, which are beta-barrel proteins with five surface-exposed loops. The main goals of this study were to characterize biological substrates and pathogenesis-associated functions of PgtE and to determine the conditions where PgtE is fully active. In this study we found that PgtE requires rough lipopolysaccharide (LPS) to be functional but is sterically inhibited by the long O-antigen side chain in smooth LPS. Salmonella isolates normally are smooth with a long oligosaccharide O-antigen, and PgtE remains functionally cryptic in wild-type Salmonella cultivated in vitro. Interestingly, our results showed that due to increased expression of PgtE and to reduced length of the LPS O-antigen chains, the wild-type Salmonella expresses highly functional PgtE when isolated from mouse macrophage-like J774A.1 cells. Salmonella is thought to be continuously released from macrophages to infect new ones, and our results suggest that PgtE is functional during these transient extracellular growth phases. Six novel host protein substrates were identified for PgtE in this work. PgtE was previously known to activate human plasminogen (Plg) to plasmin, a broad-spectrum serine protease, and in this study PgtE was shown to interfere with the Plg system by inactivating the main inhibitor of plasmin, alpha2-antiplasmin. PgtE also interferes with another important proteolytic system of mammals by activating pro-matrix metalloproteinase-9 to an active gelatinase. PgtE also directly degrades gelatin, a component of extracellular matrices. PgtE also increases bacterial resistance against complement-mediated killing in human serum and enhances survival of Salmonella within murine macrophages as well as in the liver and spleen of intraperitoneally infected mice. Taken together, the results in this study suggest that PgtE is a virulence factor of Salmonella that has adapted to interfere with host proteolytic systems and to modify extracellular matrix; these features likely assist the migration of Salmonella during systemic salmonellosis.