944 resultados para High-temperature polymorph


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The annealing properties of Type IA Bragg gratings are investigated and compared with Type I and Type IIA Bragg gratings. The transmission properties (mean and modulated wavelength components) of gratings held at predetermined temperatures are recorded from which decay characteristics are inferred. Our data show critical results concerning the high temperature stability of Type IA gratings, as they undergo a drastic initial decay at 100°C, with a consequent mean index change that is severely reduced at this temperature However, the modulated index change of IA gratings remains stable at lower annealing temperatures of 80°C, and the mean index change decays at a comparable rate to Type I gratings at 80°C. Extending this work to include the thermal decay of Type IA gratings inscribed under strain shows that the application of strain quite dramatically transforms the temperature characteristics of the Type IA grating, modifying the temperature coefficient and annealing curves, with the grating showing a remarkable improvement in high temperature stability, leading to a robust grating that can survive temperatures exceeding 180°C. Under conditions of inscription under strain it is found that the temperature coefficient increases, but is maintained at a value considerably different to the Type I grating. Therefore, the combination of Type I and IA (strained) gratings make it possible to decouple temperature and strain over larger temperature excursions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A widely tunable and room-temperature operationable loss filter based on a long-period fibre grating (LPFG) fabricated in a B/Ge codoped fibre is reported. The filter exhibits extremely high temperature sensitivity. A maximum spectral shift of -48.1 nm from 10 to 40°C is achieved, corresponding to a thermal tuning efficiency of 1.6nm/°C. This value is increased by more than one order of magnitude compared with the LPFGs fabricated in standard telecom fibre, and even twice that of a LPFG with sensitivity enhanced by a special polymer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We demonstrate highly sensitive temperature and strain sensors based on an all-fiber Lyot filter structure, which is formed by concatenating two 45°-TFGs (tilted fiber gratings) with a PM fiber cavity. The experiment results show the all-fiber 45°-TFG Lyot filter has very high sensitivity to strain and temperature. The 45°-TFG Lyot filters of two different cavity lengths (18cm and 40 cm) have been evaluated for temperature sensing by heating a section of the cavity from 10°C to 50°C. The experiment results have shown remarkably high temperature sensitivities of 0.616nm/°C for 18cm and 0.31nm/°C for 40cm long cavity filter, respectively. The 18cm long cavity filter has been subjected to strain variations up to around 550μ ε and the filter has exhibited strain sensitivities of 0.02499nm/μ ε and 0.012nm/μ ε for two straining situations, where its cavity middle section of 18cm and 9cm were stretched, respectively. © 2012 SPIE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A temperature sensor based on a multimode-singlemode-multimode (MSM) fiber structure has been proposed and experimentally demonstrated. By utilizing the interference between fiber core and cladding modes, temperature measurement is exploited by monitoring the selected resonant dips shift of the transmission spectrum. A high temperature sensitivity of 50.65 pm/ºC is achieved at a certain resonant dip, accompanied by a suppressed strain sensitivity of only 0.587 pm/με. The sensor reveals the advantages of easy fabrication and interrogation, low cost and small axial strain response. © 2013 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It has never been easy for manufacturing companies to understand their confidence level in terms of how accurate and to what degree of flexibility parts can be made. This brings uncertainty in finding the most suitable manufacturing method as well as in controlling their product and process verification systems. The aim of this research is to develop a system for capturing the company’s knowledge and expertise and then reflect it into an MRP (Manufacturing Resource Planning) system. A key activity here is measuring manufacturing and machining capabilities to a reasonable confidence level. For this purpose an in-line control measurement system is introduced to the company. Using SPC (Statistical Process Control) not only helps to predict the trend in manufacturing of parts but also minimises the human error in measurement. Gauge R&R (Repeatability and Reproducibility) study identifies problems in measurement systems. Measurement is like any other process in terms of variability. Reducing this variation via an automated machine probing system helps to avoid defects in future products.Developments in aerospace, nuclear, oil and gas industries demand materials with high performance and high temperature resistance under corrosive and oxidising environments. Superalloys were developed in the latter half of the 20th century as high strength materials for such purposes. For the same characteristics superalloys are considered as difficult-to-cut alloys when it comes to formation and machining. Furthermore due to the sensitivity of superalloy applications, in many cases they should be manufactured with tight tolerances. In addition superalloys, specifically Nickel based, have unique features such as low thermal conductivity due to having a high amount of Nickel in their material composition. This causes a high surface temperature on the work-piece at the machining stage which leads to deformation in the final product.Like every process, the material variations have a significant impact on machining quality. The main cause of variations can originate from chemical composition and mechanical hardness. The non-uniform distribution of metal elements is a major source of variation in metallurgical structures. Different heat treatment standards are designed for processing the material to the desired hardness levels based on application. In order to take corrective actions, a study on the material aspects of superalloys has been conducted. In this study samples from different batches of material have been analysed. This involved material preparation for microscopy analysis, and the effect of chemical compositions on hardness (before and after heat treatment). Some of the results are discussed and presented in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The viscosity of four aged bio-oil samples was measured experimentally at various shear rates and temperatures using a rotational viscometer. The experimental bio-oils were derived from fast pyrolysis of beech wood at 450, 500, and 550 °C and Miscanthus at 500 °C (in this work, they were named as BW1, BW2, BW3, and MXG) in a bubbling fluidized bed reactor. The viscosity of all bio-oils was kept constant at various shear rates at the same temperature, which indicated that they were Newtonian fluids. The viscosity of bio-oils was strongly dependent upon the temperature, and with the increase of the temperature from 30 to 80 °C, the viscosity of BW1, BW2, BW3, and MXG decreased by 90.7, 93.3, 92.6, and 90.2%, respectively. The Arrhenius viscosity model, which has been commonly used to represent the temperature dependence of the viscosity of many fluids, did not fit the viscosity-temperature experimental data of all bio-oils very well, especially in the low- and high-temperature regions. For comparison, the Williams-Landel-Ferry (WLF) model was also used. The results showed that the WLF model gave a very good description of the viscosity-temperature relationship of each bio-oil with very small residuals and the BW3 bio-oil had the strongest viscosity-temperature dependence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Currently the data storage industry is facing huge challenges with respect to the conventional method of recording data known as longitudinal magnetic recording. This technology is fast approaching a fundamental physical limit, known as the superparamagnetic limit. A unique way of deferring the superparamagnetic limit incorporates the patterning of magnetic media. This method exploits the use of lithography tools to predetermine the areal density. Various nanofabrication schemes are employed to pattern the magnetic material are Focus Ion Beam (FIB), E-beam Lithography (EBL), UV-Optical Lithography (UVL), Self-assembled Media Synthesis and Nanoimprint Lithography (NIL). Although there are many challenges to manufacturing patterned media, the large potential gains offered in terms of areal density make it one of the most promising new technologies on the horizon for future hard disk drives. Thus, this dissertation contributes to the development of future alternative data storage devices and deferring the superparamagnetic limit by designing and characterizing patterned magnetic media using a novel nanoimprint replication process called "Step and Flash Imprint lithography". As opposed to hot embossing and other high temperature-low pressure processes, SFIL can be performed at low pressure and room temperature. Initial experiments carried out, consisted of process flow design for the patterned structures on sputtered Ni-Fe thin films. The main one being the defectivity analysis for the SFIL process conducted by fabricating and testing devices of varying feature sizes (50 nm to 1 μm) and inspecting them optically as well as testing them electrically. Once the SFIL process was optimized, a number of Ni-Fe coated wafers were imprinted with a template having the patterned topography. A minimum feature size of 40 nm was obtained with varying pitch (1:1, 1:1.5, 1:2, and 1:3). The Characterization steps involved extensive SEM study at each processing step as well as Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low temperature sintering has become a very important research area in ceramics processing and sintering as a promising process to obtain grain size below 100nm. For electronic ceramics, low temperature sintering is particularly difficult, because not only the required microstructure but also the desired electronic properties should be obtained. In this dissertation, the effect of liquid sintering aids and particle size (micrometer and nanometer) on sintering temperature and Positive Temperature Coefficient Resistivity (PTCR) property are investigated for Ba1-xSrxTiO3 (BST) doped with 0.2-0.3mol% Sb3+ (x = 0.1, 0.2, 0.3, 0.4 and 0.5). Different sintering aids with low melting point are used as sintering aids to decrease the sintering temperature for micrometer size BST particles. Micrometer size and nanometer size Ba1-xSrxTiO 3 (BST) particles are used to demonstrate the particle size effect on the sintering temperature for semiconducting BST. To reduce the sintering temperature, three processes are developed, i.e. 1 using sol-gel nanometer size Sb3+ doped powders with a sintering aid; 2 using micrometer size powders plus a sintering aid; and 3 using nanometer size Sb3+ doped powders with sintering aids. Grain size effect on PTCR characteristics is investigated through comparison between micrometer size powder sintered pellets and nanometer size powder sintered pellets. The former has lower resistivity at temperatures below the Curie temperature (Tc) and high resistivity at temperatures above the Curie temperature (Tc) along with higher ρ max/ρmin ratio (ρmax is the highest resistivity at temperatures above Tc, ρmin is the lowest resistivity at temperatures below Tc), whereas the latter has both higher ρ max and ρmin. Also, ρmax/ρmin is smaller than that of pellets with larger grain size. The reason is that the solid with small grain size has more grain boundaries than the solid with large grain size. The contribution z at room temperature and high temperature and a lower ρmax/ρmin ratio value.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Typically, hermetic feedthroughs for implantable devices, such as pacemakers, use a alumina ceramic insulator brazed to a platinum wire pin. This combination of material has a long history in implantable devices and has been approved by the FDA for implantable hermetic feedthroughs. The growing demand for increased input/output (I/O) hermetic feedthroughs for implantable neural stimulator applications could be addressed by developing a new, cofired platinum/alumina multilayer ceramic technology in a configuration that supports 300 plus I/Os, which is not commercially available. Seven platinum powders with different particle sizes were used to develop different conductive cofire inks to control the densification mismatch between platinum and alumina. Firing profile (ramp rate, burn- out and holding times) and firing atmosphere and concentrations (hydrogen (wet/dry), air, neutral, vacuum) were also optimized. Platinum and alumina exhibit the alloy formation reaction in a reduced atmosphere. Formation of any compound can increase the bonding of the metal/ceramic interface, resulting in enhanced hermeticity. The feedthrough fabricated in a reduced atmosphere demonstrated significantly superior performance than that of other atmospheres. A composite structure of tungsten/platinum ratios graded thru the via structure (pure W, 50/50 W/Pt, 80/20 Pt/W and pure Pt) exhibited the best performance in comparison to the performance of other materials used for ink metallization. Studies on the high temperature reaction of platinum and alumina, previously unreported, showed that, at low temperatures in reduced atmosphere, Pt 3Al or Pt8Al21 with a tetragonal structure would be formed. Cubic Pt3Al is formed upon heating the sample to temperatures above 1350 °C. This cubic structure is the equilibrium state of Pt-Al alloy at high temperatures. The alumina dissolves into the platinum ink and is redeposited as a surface coating. This was observed on both cofired samples and pure platinum thin films coated on a 99.6 Wt% alumina and fired at 1550 °C. Different mechanisms are proposed to describe this behavior based on the size of the platinum particle

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low temperature sintering has become a very important research area in ceramics processing and sintering as a promising process to obtain grain size below 100nm. For electronic ceramics, low temperature sintering is particularly difficult, because not only the required microstructure but also the desired electronic properties should be obtained. In this dissertation, the effect of liquid sintering aids and particle size (micrometer and nanometer) on sintering temperature and Positive Temperature Coefficient Resistivity (PTCR) property are investigated for Ba1-xSrxTiO3 (BST) doped with 0.2-0.3mol% Sb3+ (x = 0.1,0.2,0.3,0.4 and 0.5). Different sintering aids with low melting point are used as sintering aids to decrease the sintering temperature for micrometer size BST particles. Micrometer size and nanometer size Ba1-xSrxTiO3 (BST) particles are used to demonstrate the particle size effect on the sintering temperature for semiconducting BST. To reduce the sintering temperature, three processes are developed, i.e. 1 using sol-gel nanometer size Sb3+ doped powders with a sintering aid; 2 using micrometer size powders plus a sintering aid; and 3 using nanometer size Sb3+ doped powders with sintering aids. Grain size effect on PTCR characteristics is investigated through comparison between micrometer size powder sintered pellets and nanometer size powder sintered pellets. The former has lower resistivity at temperatures below the Curie temperature (Tc) and high resistivity at temperatures above the Curie temperature (Tc) along with higher ñmax/ñmin ratio (ñmax is the highest resistivity at temperatures above Tc, ñmin is the lowest resistivity at temperatures below Tc), whereas the latter has both higher ñmax and ñmin. Also, ñmax/ñmin is smaller than that of pellets with larger grain size. The reason is that the solid with small grain size has more grain boundaries than the solid with large grain size. The contribution z at room temperature and high temperature and a lower ñmax/ñmin ratio value.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding the preservation and deposition history of organic molecules is crucial for the understanding of paleoenvironmental information contained in their abundance ratios such as Uk'37 and TEX86 used as proxies for sea surface temperature (SST). Based on their relatively high refractivity, alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) can survive postdepositional processes like lateral transport, potentially causing inferred SSTs to be misleading. Likewise, selective preservation of alkenones and GDGTs may cause biases of the SST proxies themselves and can lead to decoupling of both proxy records. Here we report compound-specific radiocarbon data of marine biomarkers including alkenones, GDGTs, and low molecular weight (LMW) n-fatty acids from Black Sea sediments deposited under different redox regimes to evaluate the potentially differential preservation of both biomarker classes and its effect on the SST indices Uk'37 and TEX86 . The decadal D14C values of alkenones, GDGTs, and LMW n-fatty acids indicate similar preservation under oxic, suboxic, and anoxic redox regimes and no contribution of pre-aged compounds, e.g., by lateral supply. Moreover, similar 14C concentrations of crenarchaeol, alkenones, and LMW n-fatty acids imply that the thaumarchaeotal GDGTs preserved in these sediments are produced in the euphotic zone rather than in subsurface/thermocline waters. However, we observe biomarker-based SSTs that strongly deviate (deltaSST up to 8.4 °C) from in situ measured mean annual SSTs in the Black Sea. This is not due to redox-dependent differential biomarker preservation as implied by their D14C values and spatial SST pattern. Since contributions from different sources can largely be excluded, the deviation of the Uk'37 and TEX86 proxy-derived SSTs from in situ SSTs requires further study of phylogenetic and other yet unknown environmental controls on alkenone and GDGT lipid distributions in the Black Sea.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coral reefs are increasingly threatened by global and local anthropogenic stressors, such as rising seawater temperature and nutrient enrichment. These two stressors vary widely across the reef face and parsing out their influence on coral communities at reef system scales has been particularly challenging. Here, we investigate the influence of temperature and nutrients on coral community traits and life history strategies on lagoonal reefs across the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution sea surface temperatures (SST) to classify reefs as enduring low (lowTP), moderate (modTP), or extreme (extTP) temperature parameters over 10 years (2003 to 2012). Chlorophyll-a (chl a) records obtained for the same interval were employed as a proxy for bulk nutrients and these records were complemented with in situ measurements to "sea truth" nutrient content across the three reef types. Chl a concentrations were highest at extTP sites, medial at modTP sites and lowest at lowTP sites. Coral species richness, abundance, diversity, density, and percent cover were lower at extTP sites compared to lowTP and modTP sites, but these reef community traits did not differ between lowTP and modTP sites. Coral life history strategy analyses showed that extTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. These results suggest that differences in coral community traits and life history strategies between extTP and lowTP/modTP sites were driven primarily by temperature differences with differences in nutrients across site types playing a lesser role. Dominance of weedy and stress-tolerant genera at extTP sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant further protective status during this climate change interval. Data associated with this project are archived here, including: -SST data -Satellite Chl a data -Nutrient measurements -Raw coral community survey data For questions contact Justin Baumann (j.baumann3 gmail.com)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aurivillius phase Bi 5Ti 3Fe 0.7Co 0.3O 15 (BTF7C3O) thin films on α-quartz substrates were fabricated by a chemical solution deposition method and the room temperature ferroelectric and magnetic properties of this candidate multiferroic were compared with those of thin films of Mn 3 substituted, Bi 5Ti 3Fe 0.7Mn 0.3O 15 (BTF7M3O). Vertical and lateral piezoresponse force microscopy (PFM) measurements of the films conclusively demonstrate that BTF7C3O and BTF7M3O thin films are piezoelectric and ferroelectric at room temperature, with the major polarization vector in the lateral plane of the films. No net magnetization was observed for the in-plane superconducting quantum interference device (SQUID) magnetometry measurements of BTF7M3O thin films. In contrast, SQUID measurements of the BTF7C3O films clearly demonstrated ferromagnetic behavior, with a remanent magnetization, B r, of 6.37 emu/cm 3 (or 804 memu/g), remanent moment 4.99 × 10 -5 emu. The BTF7C3O films were scrutinized by x-ray diffraction, high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis mapping to assess the prospect of the observed multiferroic properties being intrinsic to the main phase. The results of extensive micro-structural phase analysis demonstrated that the BTF7C3O films comprised of a 3.95 Fe/Co-rich spinel phase, likely CoFe 2 - xTi xO 4, which would account for the observed magnetic moment in the films. Additionally, x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) imaging confirmed that the majority of magnetic response arises from the Fe sites of Fe/Co-rich spinel phase inclusions. While the magnetic contribution from the main phase could not be determined by the XMCD-PEEM images, these data however imply that the Bi 5Ti 3Fe 0.7Co 0.3O 15 thin films are likely not single phase multiferroics at room temperature. The PFM results presented demonstrate that the naturally 2D nanostructured Bi 5Ti 3Fe 0.7Co 0.3O 15 phase is a novel ferroelectric and has potential commercial applications in high temperature piezoelectric and ferroelectric memory technologies. The implications for the conclusive demonstration of ferroelectric and ferromagnetic properties in single-phase materials of this type are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Invasive species allow an investigation of trait retention and adaptations after exposure to new habitats. Recent work on corals from the Gulf of Aqaba (GoA) shows that tolerance to high temperature persists thousands of years after invasion, without any apparent adaptive advantage. Here we test whether thermal tolerance retention also occurs in another symbiont-bearing calcifying organism. To this end, we investigate the thermal tolerance of the benthic foraminifera Amphistegina lobifera from the GoA (29° 30.14167 N 34° 55.085 E) and compare it to a recent "Lessepsian invader population" from the Eastern Mediterranean (EaM) (32° 37.386 N, 34°55.169 E). We first established that the studied populations are genetically homogenous but distinct from a population in Australia, and that they contain a similar consortium of diatom symbionts, confirming their recent common descent. Thereafter, we exposed specimens from GoA and EaM to elevated temperatures for three weeks and monitored survivorship, growth rates and photophysiology. Both populations exhibited a similar pattern of temperature tolerance. A consistent reduction of photosynthetic dark yields was observed at 34°C and reduced growth was observed at 32°C. The apparent tolerance to sustained exposure to high temperature cannot have a direct adaptive importance, as peak summer temperatures in both locations remain <32°C. Instead, it seems that in the studied foraminifera tolerance to high temperature is a conservative trait and the EaM population retained this trait since its recent invasion. Such pre-adaptation to higher temperatures confers A. lobifera a clear adaptive advantage in shallow and episodically high temperature environments in the Mediterranean under further warming.