980 resultados para High-resolution continuum source graphite furnace atomic absorption spectrometry
Resumo:
OBJECTIVE: To assess the response of RA patients to rituximab (RTX) treatment using a sensitive imaging technique for synovitis. METHODS: Twenty-three RA patients were treated with two 1000-mg infusions of the B-cell depleting antibody, RTX, in an observational protocol. Clinical response was assessed by the European League Against Rheumatism (EULAR) response criteria. High-resolution grey-scale and colour-coded power Doppler (PD) ultrasonography was performed at baseline and 6 months after RTX. The second to fifth MCP and PIP joints were bilaterally examined with joints in a neutral 0 position from a palmar view and scored from 0 to 3. RESULTS: Median disease activity score (DAS28) improved from 5.03 to 3.56 (P = 0.001), which corresponded to a EULAR moderate response in 11 of 23 patients and a EULAR good response in another 6 patients. Improved control of disease activity by RTX was also indicated by tapering of median daily corticosteroid doses from 10 to 5 mg, without flare ups. Mean grey-scale scores correlated with the swollen joint count at baseline (r = 0.484, P = 0.022) and month 6 (r = 0.519, P = 0.011). Mean grey-scale scores improved upon RTX from a 0.90 median (range 0.13-1.87) to 0.75 (range 0.19-1.50, P = 0.023). Frequency of PD positive joints was low (6.1%) at baseline and did not significantly change following RTX treatment. CONCLUSIONS: High-resolution grey-scale ultrasonography (US) examination confirmed reduced synovial hyperplasia, but the applied PD method displayed no significant changes. Therefore, only grey-scale US is recommended in follow-up examinations after RTX treatment.
Resumo:
BACKGROUND: Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. METHODS: Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. RESULTS: 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as "potentially pathogenic". Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. CONCLUSIONS: Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered "new syndromes" were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype-phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.
Resumo:
OBJECT: Ultrasound may be a reliable but simpler alternative to intraoperative MR imaging (iMR imaging) for tumor resection control. However, its reliability in the detection of tumor remnants has not been definitely proven. The aim of the study was to compare high-field iMR imaging (1.5 T) and high-resolution 2D ultrasound in terms of tumor resection control. METHODS: A prospective comparative study of 26 consecutive patients was performed. The following parameters were compared: the existence of tumor remnants after presumed radical removal and the quality of the images. Tumor remnants were categorized as: detectable with both imaging modalities or visible only with 1 modality. RESULTS: Tumor remnants were detected in 21 cases (80.8%) with iMR imaging. All large remnants were demonstrated with both modalities, and their image quality was good. Two-dimensional ultrasound was not as effective in detecting remnants<1 cm. Two remnants detected with iMR imaging were missed by ultrasound. In 2 cases suspicious signals visible only on ultrasound images were misinterpreted as remnants but turned out to be a blood clot and peritumoral parenchyma. The average time for acquisition of an ultrasound image was 2 minutes, whereas that for an iMR image was approximately 10 minutes. Neither modality resulted in any procedure-related complications or morbidity. CONCLUSIONS: Intraoperative MR imaging is more precise in detecting small tumor remnants than 2D ultrasound. Nevertheless, the latter may be used as a less expensive and less time-consuming alternative that provides almost real-time feedback information. Its accuracy is highest in case of more confined, deeply located remnants. In cases of more superficially located remnants, its role is more limited.
Resumo:
OBJECTIVE: The standard technique of two-dimensional intra-arterial digital subtraction angiography (2D-DSA) for the imaging of experimental rabbit aneurysms is invasive and has considerable surgical risks. Therefore, minimally invasive techniques ideally providing three-dimensional imaging for intervention planning and follow-up are needed. This study evaluates the feasibility and quality of three-dimensional 3-T magnetic resonance angiography (3D-3T-MRA) and compares 3D-3T-MRA with 2D-DSA in experimental aneurysms in the rabbit. METHOD: Three microsurgically created aneurysms in three rabbits were evaluated using 2D-DSA and 3D-3T-MRA. Imaging of the aneurysms was performed 2 weeks after creation using 2D-DSA and contrast-enhanced (CE) MRA. Measurements included aneurysm dome (length and width) and aneurysm neck. Aneurysm volumes were determined using CE-MRA. RESULTS: The measurements of the aneurysms' dimensions and the evaluation of vicinity vessels with both techniques showed a good correlation. The mean aneurysm length, aneurysm width and neck width measured with DSA (6.9, 4.1 and 2.8 mm, respectively) correlated with the measurements performed in 3D-3T-MRA (6.9, 4 and 2.5 mm, respectively). The mean aneurysm volumes measured with CE-MRA was 46.7 mm(3). CONCLUSION: 3D-3T CE-MRA is feasible and less invasive and is a safer imaging alternative to DSA for experimental aneurysm. Additionally, aneurysm technique this precise offers the possibility of repetitive 3D aneurysm volumetry for long-term follow-up studies after endovascular aneurysm occlusion.
Resumo:
This review of late-Holocene palaeoclimatology represents the results from a PAGES/CLIVAR Intersection Panel meeting that took place in June 2006. The review is in three parts: the principal high-resolution proxy disciplines (trees, corals, ice cores and documentary evidence), emphasizing current issues in their use for climate reconstruction; the various approaches that have been adopted to combine multiple climate proxy records to provide estimates of past annual-to-decadal timescale Northern Hemisphere surface temperatures and other climate variables, such as large-scale circulation indices; and the forcing histories used in climate model simulations of the past millennium. We discuss the need to develop a framework through which current and new approaches to interpreting these proxy data may be rigorously assessed using pseudo-proxies derived from climate model runs, where the `answer' is known. The article concludes with a list of recommendations. First, more raw proxy data are required from the diverse disciplines and from more locations, as well as replication, for all proxy sources, of the basic raw measurements to improve absolute dating, and to better distinguish the proxy climate signal from noise. Second, more effort is required to improve the understanding of what individual proxies respond to, supported by more site measurements and process studies. These activities should also be mindful of the correlation structure of instrumental data, indicating which adjacent proxy records ought to be in agreement and which not. Third, large-scale climate reconstructions should be attempted using a wide variety of techniques, emphasizing those for which quantified errors can be estimated at specified timescales. Fourth, a greater use of climate model simulations is needed to guide the choice of reconstruction techniques (the pseudo-proxy concept) and possibly help determine where, given limited resources, future sampling should be concentrated.