810 resultados para High intensity focused ultrasound
Resumo:
A general electrical model of a piezoelectric transducer for ultrasound applications consists of a capacitor in parallel with RLC legs. A high power voltage source converter can however generate significant voltage stress across the transducer that creates high leakage currents. One solution is to reduce the voltage stress across the piezoelectric transducer by using an LC filter, however a main drawback is changing the piezoelectric resonant frequency and its characteristics. Thereby it reduces the efficiency of energy conversion through the transducer. This paper proposes that a high frequency current source converter is a suitable topology to drive high power piezoelectric transducers efficiently.
Resumo:
Most high-power ultrasound applications are driven by two-level inverters. However, the broad spectral content of the two-level pulse results in undesired harmonics that can decrease the performance of the system significantly. On the other hand, it is crucial to excite the piezoelectric devices at their main resonant frequency in order to have maximum energy conversion. Therefore a high-quality, low-distorted power signal is needed to excite the high-power piezoelectric transducer at its resonant frequency. This study proposes an efficient approach to develop the performance of high-power ultrasonic applications using multilevel inverters along with a frequency estimation algorithm. In this method, the resonant frequencies are estimated based on relative minimums of the piezoelectric impedance frequency response. The algorithm follows the resonant frequency variation and adapts the multilevel inverter reference frequency to drive an ultrasound transducer at high power. Extensive simulation and experimental results indicate the effectiveness of the proposed approach.
Resumo:
In this paper characteristic of a DBD (Dielectric Barrier Discharge) plasma lamp is investigated based on the lamp intensity and power consumption. A pulsed power supply with controllable parameters based on a push-pull converter is developed for lamp excitation at different voltage levels and repetition rate. The experimentations were conducted for 28 different operating points with the frequency range of 2 kHz to 15 Khz at output voltage levels of between 7.4 kV up to 13 kV. The obtained results show the feasibility of finding an optimum operation point due to nonlinear behaviour of the DBD lamp.
Resumo:
Purpose: The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone for the assessment of osteoporosis follows a parabolic-type dependence with bone volume fraction; having minima values corresponding to both entire bone and entire marrow. Langton has recently proposed that the primary BUA mechanism may be significant phase interference due to variations in propagation transit time through the test sample as detected over the phase-sensitive surface of the receive ultrasound transducer. This fundamentally simple concept assumes that the propagation of ultrasound through a complex solid : liquid composite sample such as cancellous bone may be considered by an array of parallel ‘sonic rays’. The transit time of each ray is defined by the proportion of bone and marrow propagated, being a minimum (tmin) solely through bone and a maximum (tmax) solely through marrow. A Transit Time Spectrum (TTS), ranging from tmin to tmax, may be defined describing the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit time over the surface of the receive ultrasound transducer. Phase interference may result from interaction of ‘sonic rays’ of differing transit times. The aim of this study was to test the hypothesis that there is a dependence of phase interference upon the lateral inhomogenity of transit time by comparing experimental measurements and computer simulation predictions of ultrasound propagation through a range of relatively simplistic solid:liquid models exhibiting a range of lateral inhomogeneities. Methods: A range of test models was manufactured using acrylic and water as surrogates for bone and marrow respectively. The models varied in thickness in one dimension normal to the direction of propagation, hence exhibiting a range of transit time lateral inhomogeneities, ranging from minimal (single transit time) to maximal (wedge; ultimately the limiting case where each sonic ray has a unique transit time). For the experimental component of the study, two unfocused 1 MHz ¾” broadband diameter transducers were utilized in transmission mode; ultrasound signals were recorded for each of the models. The computer simulation was performed with Matlab, where the transit time and relative amplitude of each sonic ray was calculated. The transit time for each sonic ray was defined as the sum of transit times through acrylic and water components. The relative amplitude considered the reception area for each sonic ray along with absorption in the acrylic. To replicate phase-sensitive detection, all sonic rays were summed and the output signal plotted in comparison with the experimentally derived output signal. Results: From qualtitative and quantitative comparison of the experimental and computer simulation results, there is an extremely high degree of agreement of 94.2% to 99.0% between the two approaches, supporting the concept that propagation of an ultrasound wave, for the models considered, may be approximated by a parallel sonic ray model where the transit time of each ray is defined by the proportion of ‘bone’ and ‘marrow’. Conclusions: This combined experimental and computer simulation study has successfully demonstrated that lateral inhomogeneity of transit time has significant potential for phase interference to occur if a phase-sensitive ultrasound receive transducer is implemented as in most commercial ultrasound bone analysis devices.
Resumo:
Objective To evaluate the time course of the recovery of transverse strain in the Achilles and patellar tendon following a bout of resistance exercise. Methods Seventeen healthy adults underwent sonographic examination of the right patellar (n=9) and Achilles (n=8) tendons immediately prior to and following 90 repetitions of weight-bearing quadriceps and gastrocnemius-resistance exercise performed against an effective resistance of 175% and 250% body weight, respectively. Sagittal tendon thickness was determined 20 mm from the enthesis and transverse strain, as defined by the stretch ratio, was repeatedly monitored over a 24 h recovery period. Results Resistance exercise resulted in an immediate decrease in Achilles (t7=10.6, p<0.01) and patellar (t8=8.9, p<0.01) tendon thickness, resulting in an average transverse stretch ratio of 0.86±0.04 and 0.82±0.05, which was not significantly different between tendons. The magnitude of the immediate transverse strain response, however, was reduced with advancing age (r=0.63, p<0.01). Recovery in transverse strain was prolonged compared with the duration of loading and exponential in nature. The average primary recovery time was not significantly different between the Achilles (6.5±3.2 h) and patellar (7.1±3.2 h) tendons. Body weight accounted for 62% and 64% of the variation in recovery time, respectively. Conclusions Despite structural and biochemical differences between the Achilles and patellar tendon, the mechanisms underlying transverse creep recovery in vivo appear similar and are highly time dependent. These novel findings have important implications concerning the time required for the mechanical recovery of high-stress tendons following an acute bout of exercise.
Resumo:
The ability of a piezoelectric transducer in energy conversion is rapidly expanding in several applications. Some of the industrial applications for which a high power ultrasound transducer can be used are surface cleaning, water treatment, plastic welding and food sterilization. Also, a high power ultrasound transducer plays a great role in biomedical applications such as diagnostic and therapeutic applications. An ultrasound transducer is usually applied to convert electrical energy to mechanical energy and vice versa. In some high power ultrasound system, ultrasound transducers are applied as a transmitter, as a receiver or both. As a transmitter, it converts electrical energy to mechanical energy while a receiver converts mechanical energy to electrical energy as a sensor for control system. Once a piezoelectric transducer is excited by electrical signal, piezoelectric material starts to vibrate and generates ultrasound waves. A portion of the ultrasound waves which passes through the medium will be sensed by the receiver and converted to electrical energy. To drive an ultrasound transducer, an excitation signal should be properly designed otherwise undesired signal (low quality) can deteriorate the performance of the transducer (energy conversion) and increase power consumption in the system. For instance, some portion of generated power may be delivered in unwanted frequency which is not acceptable for some applications especially for biomedical applications. To achieve better performance of the transducer, along with the quality of the excitation signal, the characteristics of the high power ultrasound transducer should be taken into consideration as well. In this regard, several simulation and experimental tests are carried out in this research to model high power ultrasound transducers and systems. During these experiments, high power ultrasound transducers are excited by several excitation signals with different amplitudes and frequencies, using a network analyser, a signal generator, a high power amplifier and a multilevel converter. Also, to analyse the behaviour of the ultrasound system, the voltage ratio of the system is measured in different tests. The voltage across transmitter is measured as an input voltage then divided by the output voltage which is measured across receiver. The results of the transducer characteristics and the ultrasound system behaviour are discussed in chapter 4 and 5 of this thesis. Each piezoelectric transducer has several resonance frequencies in which its impedance has lower magnitude as compared to non-resonance frequencies. Among these resonance frequencies, just at one of those frequencies, the magnitude of the impedance is minimum. This resonance frequency is known as the main resonance frequency of the transducer. To attain higher efficiency and deliver more power to the ultrasound system, the transducer is usually excited at the main resonance frequency. Therefore, it is important to find out this frequency and other resonance frequencies. Hereof, a frequency detection method is proposed in this research which is discussed in chapter 2. An extended electrical model of the ultrasound transducer with multiple resonance frequencies consists of several RLC legs in parallel with a capacitor. Each RLC leg represents one of the resonance frequencies of the ultrasound transducer. At resonance frequency the inductor reactance and capacitor reactance cancel out each other and the resistor of this leg represents power conversion of the system at that frequency. This concept is shown in simulation and test results presented in chapter 4. To excite a high power ultrasound transducer, a high power signal is required. Multilevel converters are usually applied to generate a high power signal but the drawback of this signal is low quality in comparison with a sinusoidal signal. In some applications like ultrasound, it is extensively important to generate a high quality signal. Several control and modulation techniques are introduced in different papers to control the output voltage of the multilevel converters. One of those techniques is harmonic elimination technique. In this technique, switching angles are chosen in such way to reduce harmonic contents in the output side. It is undeniable that increasing the number of the switching angles results in more harmonic reduction. But to have more switching angles, more output voltage levels are required which increase the number of components and cost of the converter. To improve the quality of the output voltage signal with no more components, a new harmonic elimination technique is proposed in this research. Based on this new technique, more variables (DC voltage levels and switching angles) are chosen to eliminate more low order harmonics compared to conventional harmonic elimination techniques. In conventional harmonic elimination method, DC voltage levels are same and only switching angles are calculated to eliminate harmonics. Therefore, the number of eliminated harmonic is limited by the number of switching cycles. In the proposed modulation technique, the switching angles and the DC voltage levels are calculated off-line to eliminate more harmonics. Therefore, the DC voltage levels are not equal and should be regulated. To achieve this aim, a DC/DC converter is applied to adjust the DC link voltages with several capacitors. The effect of the new harmonic elimination technique on the output quality of several single phase multilevel converters is explained in chapter 3 and 6 of this thesis. According to the electrical model of high power ultrasound transducer, this device can be modelled as parallel combinations of RLC legs with a main capacitor. The impedance diagram of the transducer in frequency domain shows it has capacitive characteristics in almost all frequencies. Therefore, using a voltage source converter to drive a high power ultrasound transducer can create significant leakage current through the transducer. It happens due to significant voltage stress (dv/dt) across the transducer. To remedy this problem, LC filters are applied in some applications. For some applications such as ultrasound, using a LC filter can deteriorate the performance of the transducer by changing its characteristics and displacing the resonance frequency of the transducer. For such a case a current source converter could be a suitable choice to overcome this problem. In this regard, a current source converter is implemented and applied to excite the high power ultrasound transducer. To control the output current and voltage, a hysteresis control and unipolar modulation are used respectively. The results of this test are explained in chapter 7.
Resumo:
Background Low levels of physical activity and high levels of sedentary behavior (SB) are major public health concerns. This study was designed to develop and validate the 7-day Sedentary (S) and Light Intensity Physical Activity (LIPA) Log (7-day SLIPA Log), a self-report measure of specific daily behaviors. Method To develop the log, 62 specific SB and LIPA behaviors were chosen from the Compendium of Physical Activities. Face-to-face interviews were conducted with 32 sedentary volunteers to identify domains and behaviors of SB and LIPA. To validate the log, a further 22 sedentary adults were recruited to wear the GT3X for 7 consecutive days and nights. Results Pearson correlations (r) between the 7-day SLIPA Log and GT3X were significant for sedentary (r =.86, p < 0.001), for LIPA (r =.80, p < 0.001). Lying and sitting postures were positively correlated with GT3X output (r =.60 and r =.64, p < 0.001, respectively). No significant correlation was found for standing posture (r =.14, p = 0.53).The kappa values between the 7-day SLIPA Log and GT3X variables ranged from 0.09–0.61, indicating poor to good agreement. Conclusion The 7-day SLIPA Log is a valid self-report measure of SB and LIPA in specific behavioral domains.
Resumo:
The main contribution of this project was to investigate power electronics technology in designing and developing high frequency high power converters for industrial applications. Therefore, the research was conducted at two levels; first at system level which mainly encapsulated the circuit topology and control scheme and second at application level which involves with real-world applications. Pursuing these objectives, varied topologies have been developed and proposed within this research. The main aim was to resolving solid-state switches limited power rating and operating speed while increasing the system flexibility considering the application characteristics. The developed new power converter configurations were applied to pulsed power and high power ultrasound applications for experimental validation.
Resumo:
This paper examines ‘green’ entrepreneurial nascent and young firms in Australia. Findings of interest in this paper include: • Green entrepreneurs are more likely to be highly educated and have an extended depth of experience within their industry and are more likely to have started a business prior to their current venture. • Green entrepreneurs exhibit increased levels of innovation, with an increased focus on new & high technology, R&D and the development of proprietary technology. • Green entrepreneurs are most likely to be based upon a product rather than a service and have a higher emphasis upon growth when compared with non-green entrepreneurs. • Green entrepreneurial firms tend to have a longer venture creation process and draw financial resources from a larger number of sources and rely more upon equity as a means of financing their venture.
Resumo:
This thesis studied the source of instability in optical phase modulators used in high accuracy laser measurement systems. The nonlinear origin of the amplitude noise helped further reducing this instability in applications that rely on phase modulators to function. This outcome will have positive impacts on the development of new methods in the amplitude noise suppression.
Resumo:
A unique high temporal frequency dataset from an irrigated cotton-wheat rotation was used to test the agroecosystem model DayCent to simulate daily N2O emissions from sub-tropical vertisols under different irrigation intensities. DayCent was able to simulate the effect of different irrigation intensities on N2O fluxes and yield, although it tended to overestimate seasonal fluxes during the cotton season. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N2O fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N2O emission from irrigated cropping systems. A 25 year scenario analysis indicated that N2O losses from irrigated cotton-wheat rotations on black vertisols in Australia can be substantially reduced by an optimized fertilizer and irrigation management system (i.e. frequent irrigation, avoidance of excessive fertiliser application), while sustaining maximum yield potentials.
Resumo:
The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study we explore the emotional climates, that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality learning experiences for preservice science teachers. Theories related to the sociology of emotions informed our analyses from data sources such as preservice teachers’ perceptions of the emotional climate of their class, emotional facial expressions, classroom conversations, and cogenerative dialogue. The major outcome from our analyses was that even though preservice teachers reported high positive emotional climate during the professor’s science demonstrations, they also valued the professor’s in the moment reflections on her teaching that were associated with low emotional climate ratings. We co-relate emotional climate data and preservice teachers’ comments during cogenerative dialogue to expand our understanding of high quality experiences and emotional climate in science teacher education. Our study also contributes refinements to research perspectives on emotional climate.
Resumo:
Majority of the current research on the mounting system has emphasised on the low/medium power engine, rare work has been reported for the high-speed and heavy-duty engine, the vibration characteristics of which exhibits significantly increased complexity and uncertainty. In this work, a general dynamics model was firstly established to describe the dynamic properties of a mounting system with various numbers of mounts. Then, this model was employed for the optimization of the mounting system. A modified Powell conjugate direction method was developed to improve the optimization efficiency. Basing on the optimization results obtained from the theoretical model, a mounting system was constructed for a V6 diesel engine. The experimental measurement of the vibration intensity of the mounting systems shows excellent agreement with the theoretical calculations, indicating the validity of the model. This dynamics model opens a new avenue in assessing and designing the mounting system for a high-speed and heavy-duty engine. On the other hand, the delineated dynamics model, and the optimization algorithm should find wide applications for other mounting systems, such as the power transmission system which usually has various uncertain mounts.
Resumo:
Purpose: We examine the interaction between trait resilience and control in predicting coping and performance. Drawing on a person–environment fit perspective, we hypothesized resilient individuals would cope and perform better in demanding work situations when control was high. In contrast, those low in resilience would cope and perform better when control was low. Recognizing the relationship between trait resilience and performance also could be indirect, adaptive coping was examined as a mediating mechanism through which high control enables resilient individuals to demonstrate better performance. Methodology: In Study 1 (N = 78) and Study 2 (N = 94), participants completed a demanding inbox task in which trait resilience was measured and high and low control was manipulated. Study 3 involved surveying 368 employees on their trait resilience, control, and demand at work (at Time 1), and coping and performance 1 month later at Time 2. Findings: For more resilient individuals, high control facilitated problem-focused coping (Study 1, 2, and 3), which was indirectly associated with higher subjective performance (Study 1), mastery (Study 2), adaptive, and proficient performance (Study 3). For more resilient individuals, high control also facilitated positive reappraisal (Study 2 and 3), which was indirectly associated with higher adaptive and proficient performance (Study 3). Implications: Individuals higher in resilience benefit from high control because it enables adaptive coping. Originality/value: This research makes two contributions: (1) an experimental investigation into the interaction of trait resilience and control, and (2) investigation of coping as the mechanism explaining better performance.
Resumo:
Female greater wax moths Galleria mellonella display by wing fanning in response to bursts of ultrasonic calls produced by males. The temporal and spectral characteristics of these calls show some similarities with the echolocation calls of bats that emit frequency-modulated (FM) signals. Female G. mellonella therefore need to distinguish between the attractive signals of male conspecifics, which may lead to mating opportunities, and similar sounds made by predatory bats. We therefore predicted that (1) females would display in response to playbacks of male calls; (2) females would not display in response to playbacks of the calls of echolocating bats (we used the calls of Daubenton's bat Myotis daubentonii as representative of a typical FM echolocating bat); and (3) when presented with male calls and bat calls during the same time block, females would display more when perceived predation risk was lower. We manipulated predation risk in two ways. First, we varied the intensity of bat calls to represent a nearby (high risk) or distant (low risk) bat. Second, we played back calls of bats searching for prey (low risk) and attacking prey (high risk). All predictions were supported, suggesting that female G. mellonella are able to distinguish conspecific male mating calls from bat calls, and that they modify display rate in relation to predation risk. The mechanism (s) by which the moths separate the calls of bat and moth must involve temporal cues. Bat and moth signals differ considerably in duration, and differences in duration could be encoded by the moth's nervous system and used in discrimination.