983 resultados para High angular resolution diffusion imaging (HARDI)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last decade, there has been a significant increase in the number of high-magnetic-field MRI magnets. However, the exact effect of a high magnetic field strength (B0 ) on diffusion-weighted MR signals is not yet fully understood. The goal of this study was to investigate the influence of different high magnetic field strengths (9.4 T and 14.1 T) and diffusion times (9, 11, 13, 15, 17 and 24 ms) on the diffusion-weighted signal in rat brain white matter. At a short diffusion time (9 ms), fractional anisotropy values were found to be lower at 14.1 T than at 9.4 T, but this difference disappeared at longer diffusion times. A simple two-pool model was used to explain these findings. The model describes the white matter as a first hindered compartment (often associated with the extra-axonal space), characterized by a faster orthogonal diffusion and a lower fractional anisotropy, and a second restricted compartment (often associated with the intra-axonal space), characterized by a slower orthogonal diffusion (i.e. orthogonal to the axon direction) and a higher fractional anisotropy. Apparent T2 relaxation time measurements of the hindered and restricted pools were performed. The shortening of the pseudo-T2 value from the restricted compartment with B0 is likely to be more pronounced than the apparent T2 changes in the hindered compartment. This study suggests that the observed differences in diffusion tensor imaging parameters between the two magnetic field strengths at short diffusion time may be related to differences in the apparent T2 values between the pools. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In mammals, glycogen synthesis and degradation are dynamic processes regulating blood and cerebral glucose-levels within a well-defined physiological range. Despite the essential role of glycogen in hepatic and cerebral metabolism, its spatiotemporal distribution at the molecular and cellular level is unclear. By correlating electron microscopy and ultra-high resolution ion microprobe (NanoSIMS) imaging of tissue from fasted mice injected with (13)C-labeled glucose, we demonstrate that liver glycogenesis initiates in the hepatocyte perinuclear region before spreading toward the cell membrane. In the mouse brain, we observe that (13)C is inhomogeneously incorporated into astrocytic glycogen at a rate ~25 times slower than in the liver, in agreement with prior bulk studies. This experiment, using temporally resolved, nanometer-scale imaging of glycogen synthesis and degradation, provides greater insight into glucose metabolism in mammalian organs and shows how this technique can be used to explore biochemical pathways in healthy and diseased states. FROM THE CLINICAL EDITOR: By correlating electron microscopy and ultra-high resolution ion microprobe imaging of tissue from fasting mice injected with (13)C-labeled glucose, the authors demonstrate a method to image glycogen metabolism at the nanometer scale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To evaluate the feasibility, determine the optimal b-value, and assess the utility of 3-T diffusion-weighted MR imaging (DWI) of the spine in differentiating benign from pathologic vertebral compression fractures.Methods and Materials: Twenty patients with 38 vertebral compression fractures (24 benign, 14 pathologic) and 20 controls (total: 23 men, 17 women, mean age 56.2years) were included from December 2010 to May 2011 in this IRB-approved prospective study. MR imaging of the spine was performed on a 3-T unit with T1-w, fat-suppressed T2-w, gadolinium-enhanced fat-suppressed T1-w and zoomed-EPI (2D RF excitation pulse combined with reduced field-of-view single-shot echo-planar readout) diffusion-w (b-values: 0, 300, 500 and 700s/mm2) sequences. Two radiologists independently assessed zoomed-EPI image quality in random order using a 4-point scale: 1=excellent to 4=poor. They subsequently measured apparent diffusion coefficients (ADCs) in normal vertebral bodies and compression fractures, in consensus.Results: Lower b-values correlated with better image quality scores, with significant differences between b=300 (mean±SD=2.6±0.8), b=500 (3.0±0.7) and b=700 (3.6±0.6) (all p<0.001). Mean ADCs of normal vertebral bodies (n=162) were 0.23, 0.17 and 0.11×10-3mm2/s with b=300, 500 and 700s/mm2, respectively. In contrast, mean ADCs were 0.89, 0.70 and 0.59×10-3mm2/s for benign vertebral compression fractures and 0.79, 0.66 and 0.51×10-3mm2/s for pathologic fractures with b=300, 500 and 700s/mm2, respectively. No significant difference was found between ADCs of benign and pathologic fractures.Conclusion: 3-T DWI of the spine is feasible and lower b-values (300s/mm2) are recommended. However, our preliminary results show no advantage of DWI in differentiating benign from pathologic vertebral compression fractures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coronary MR imaging is a promising noninvasive technique for the combined assessment of coronary artery anatomy and function. Anomalous coronary arteries and aneurysms can reliably be assessed in clinical practice using coronary MR imaging and the presence of significant left main or proximal multivessel coronary artery disease detected. Technical challenges that need to be addressed are further improvements in motion suppression and abbreviated scanning times aimed at improving spatial resolution and patient comfort. The development of new and specific contrast agents, high-field MR imaging with improved spatial resolution, and continued progress in MR imaging methods development will undoubtedly lead to further progress toward the noninvasive and comprehensive assessment of coronary atherosclerotic disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present and apply a new three-dimensional model for the prediction of canopy-flow and turbulence dynamics in open-channel flow. The approach uses a dynamic immersed boundary technique that is coupled in a sequentially staggered manner to a large eddy simulation. Two different biomechanical models are developed depending on whether the vegetation is dominated by bending or tensile forces. For bending plants, a model structured on the Euler-Bernoulli beam equation has been developed, whilst for tensile plants, an N-pendula model has been developed. Validation against flume data shows good agreement and demonstrates that for a given stem density, the models are able to simulate the extraction of energy from the mean flow at the stem-scale which leads to the drag discontinuity and associated mixing layer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: The goal of the present study was to develop a strategy for three-dimensional (3D) volume acquisition along the major axes of the coronary arteries. BACKGROUND: For high-resolution 3D free-breathing coronary magnetic resonance angiography (MRA), coverage of the coronary artery tree may be limited due to excessive measurement times associated with large volume acquisitions. Planning the 3D volume along the major axis of the coronary vessels may help to overcome such limitations. METHODS: Fifteen healthy adult volunteers and seven patients with X-ray angiographically confirmed coronary artery disease underwent free-breathing navigator-gated and corrected 3D coronary MRA. For an accurate volume targeting of the high resolution scans, a three-point planscan software tool was applied. RESULTS: The average length of contiguously visualized left main and left anterior descending coronary artery was 81.8 +/- 13.9 mm in the healthy volunteers and 76.2 +/- 16.5 mm in the patients (p = NS). For the right coronary artery, a total length of 111.7 +/- 27.7 mm was found in the healthy volunteers and 79.3 +/- 4.6 mm in the patients (p = NS). Comparing coronary MRA and X-ray angiography, a good agreement of anatomy and pathology was found in the patients. CONCLUSIONS: Double-oblique submillimeter free-breathing coronary MRA allows depiction of extensive parts of the native coronary arteries. The results obtained in patients suggest that the method has the potential to be applied in broader prospective multicenter studies where coronary MRA is compared with X-ray angiography.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coltop3D is a software that performs structural analysis by using digital elevation model (DEM) and 3D point clouds acquired with terrestrial laser scanners. A color representation merging slope aspect and slope angle is used in order to obtain a unique code of color for each orientation of a local slope. Thus a continuous planar structure appears in a unique color. Several tools are included to create stereonets, to draw traces of discontinuities, or to compute automatically density stereonet. Examples are shown to demonstrate the efficiency of the method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ABSTRACT: q-Space-based techniques such as diffusion spectrum imaging, q-ball imaging, and their variations have been used extensively in research for their desired capability to delineate complex neuronal architectures such as multiple fiber crossings in each of the image voxels. The purpose of this article was to provide an introduction to the q-space formalism and the principles of basic q-space techniques together with the discussion on the advantages as well as challenges in translating these techniques into the clinical environment. A review of the currently used q-space-based protocols in clinical research is also provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Anti-basal ganglia antibodies (ABGAs) have been suggested to be a hallmark of autoimmunity in Gilles de la Tourette's syndrome (GTS), possibly related to prior exposure to streptococcal infection. In order to detect whether the presence of ABGAs was associated with subtle structural changes in GTS, whole-brain analysis using independent sets of T(1) and diffusion tensor imaging MRI-based methods were performed on 22 adults with GTS with (n = 9) and without (n = 13) detectable ABGAs in the serum. Voxel-based morphometry analysis failed to detect any significant difference in grey matter density between ABGA-positive and ABGA-negative groups in caudate nuclei, putamina, thalami and frontal lobes. These results suggest that ABGA synthesis is not related to structural changes in grey and white matter (detectable with these methods) within frontostriatal circuits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gliomas are routinely graded according to histopathological criteria established by the World Health Organization. Although this classification can be used to understand some of the variance in the clinical outcome of patients, there is still substantial heterogeneity within and between lesions of the same grade. This study evaluated image-guided tissue samples acquired from a large cohort of patients presenting with either new or recurrent gliomas of grades II-IV using ex vivo proton high-resolution magic angle spinning spectroscopy. The quantification of metabolite levels revealed several discrete profiles associated with primary glioma subtypes, as well as secondary subtypes that had undergone transformation to a higher grade at the time of recurrence. Statistical modeling further demonstrated that these metabolomic profiles could be differentially classified with respect to pathological grading and inter-grade conversions. Importantly, the myo-inositol to total choline index allowed for a separation of recurrent low-grade gliomas on different pathological trajectories, the heightened ratio of phosphocholine to glycerophosphocholine uniformly characterized several forms of glioblastoma multiforme, and the onco-metabolite D-2-hydroxyglutarate was shown to help distinguish secondary from primary grade IV glioma, as well as grade II and III from grade IV glioma. These data provide evidence that metabolite levels are of interest in the assessment of both intra-grade and intra-lesional malignancy. Such information could be used to enhance the diagnostic specificity of in vivo spectroscopy and to aid in the selection of the most appropriate therapy for individual patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and Purpose Early prediction of motor outcome is of interest in stroke management. We aimed to determine whether lesion location at DTT is predictive of motor outcome after acute stroke and whether this information improves the predictive accuracy of the clinical scores. Methods We evaluated 60 consecutive patients within 12 hours of MCA stroke onset. We used DTT to evaluate CST involvement in the MC and PMC, CS, CR, and PLIC and in combinations of these regions at admission, at day 3, and at day 30. Severity of limb weakness was assessed using the m-NIHSS (5a, 5b, 6a, 6b). We calculated volumes of infarct and FA values in the CST of the pons. Results Acute damage to the PLIC was the best predictor associated with poor motor outcome, axonal damage, and clinical severity at admission (P&.001). There was no significant correlation between acute infarct volume and motor outcome at day 90 (P=.176, r=0.485). The sensitivity, specificity, and positive and negative predictive values of acute CST involvement at the level of the PLIC for 4 motor outcome at day 90 were 73.7%, 100%, 100%, and 89.1%, respectively. In the acute stage, DTT predicted motor outcome at day 90 better than the clinical scores (R2=75.50, F=80.09, P&.001). Conclusions In the acute setting, DTT is promising for stroke mapping to predict motor outcome. Acute CST damage at the level of the PLIC is a significant predictor of unfavorable motor outcome.