875 resultados para Herniation of rectus muscle
Resumo:
The principal theme of this thesis is the in vivo examination of ocular morphological changes during phakic accommodation, with particular attention paid to the ciliary muscle and crystalline lens. The investigations detailed involved the application of high-resolution imaging techniques to facilitate the acquisition of new data to assist in the clarification of aspects of the accommodative system that were poorly understood. A clinical evaluation of the newly available Grand Seiko Auto Ref/ Keratometer WAM-5500 optometer was undertaken to assess its value in the field of accommodation research. The device was found to be accurate and repeatable compared to subjective refraction, and has the added advantage of allowing dynamic data collection at a frequency of around 5 Hz. All of the subsequent investigations applied the WAM-5500 for determination of refractive error and objective accommodative responses. Anterior segment optical coherence tomography (AS-OCT) based studies examined the morphology and contractile response of youthful and ageing ciliary muscle. Nasal versus temporal asymmetry was identified, with the temporal aspect being both thicker and demonstrating a greater contractile response. The ciliary muscle was longer in terms of both its anterior (r = 0.49, P <0.001) and overall length (r = 0.45, P = 0.02) characteristics, in myopes. The myopic ciliary muscle does not appear to be merely stretched during axial elongation, as no significant relationship between thickness and refractive error was identified. The main contractile responses observed were a thickening of the anterior region and a shortening of the muscle, particularly anteriorly. Similar patterns of response were observed in subjects aged up to 70 years, supporting a lensocentric theory of presbyopia development. Following the discovery of nasal/ temporal asymmetry in ciliary muscle morphology and response, an investigation was conducted to explore whether the regional variations in muscle contractility impacted on lens stability during accommodation. A bespoke programme was developed to analyse AS-OCT images and determine whether lens tilt and decentration varied between the relaxed and accommodated states. No significant accommodative difference in these parameters was identified, implying that any changes in lens stability with accommodation are very slight, as a possible consequence of vitreous support. Novel three-dimensional magnetic resonance imaging (MRI) and analysis techniques were used to investigate changes in lens morphology and ocular conformation during accommodation. An accommodative reduction in lens equatorial diameter provides further evidence to support the Helmholtzian mechanism of accommodation, whilst the observed increase in lens volume challenges the widespread assertion that this structure is incompressible due to its high water content. Wholeeye MRI indicated that the volume of the vitreous chamber remains constant during accommodation. No significant changes in ocular conformation were detected using MRI. The investigations detailed provide further insight into the mechanisms of accommodation and presbyopia, and represent a platform for future work in this field.
Resumo:
The principal work reported in this thesis is the examination of autonomic profile of ciliary muscle innervation as a risk factor in myopia development. Deficiency in sympathetic inhibitory control of accommodation has been proposed as a contributory factor in the development of late onset myopia (LOM). Complementary measurements of ocular biometry, oculomotor function and dynamic accommodation response were carried out on the same subject cohort, thus allowing cross-correlation of these factors with. autonomic profile. Subjects were undergraduate and postgraduate students of Aston University. A 2.5 year longitudinal study of refractive error progression in 40 subjects revealed the onset of LOM in 10, initially emmetropic, young adult subjects (age range 18-24 years) undertaking substantial amounts of near work. A controlled, double blind experimental protocol was conducted concurrently to measure post-task open-loop accommodative regression following distance (0 D) or near (3 D above baseline tonic accommodation) closed-loop tasks of short (10 second) or long (3 minute) duration. Closed-loop tasks consisted of observation of a high contrast Maltese cross target; open-loop conditions were imposed by observation of a 0.2 c/deg Difference of Gaussian target. Accommodation responses were recorded continuously at 42 Hz using a modified Shin-Nippon SRW-5000 open-view infra-red optometer. Blockade of the sympathetic branch of accommodative control was achieved by topical instillation of the non-selective b-adrenoceptor antagonist timolol maleate. Betaxolol hydrochloride (non-selective b1-adrenoceptor antagonist) and normal saline were employed as control agents. Retarded open-loop accommodative regression under b2 blockade following the 3 minute near task indicated the presence of sympathetic facility. Sympathetic inhibitory facility in accommodation control was found in similar proportions between LOM and stable emmetropic subjects. A cross-sectional study (N=60) of autonomic profile showed that sympathetic innervation of ciliary muscle is present in similar proportions between emmetropes, early-, and late-onset myopes. Sympathetic facility was identified in 27% of emmetropes, 21% of EOMs and 29% of LOMs.
Resumo:
Background - Cancer cachexia is the progressive loss of skeletal muscle protein that contributes significantly to cancer morbidity and mortality. Evidence of antioxidant attenuation and the presence of oxidised proteins in patients with cancer cachexia indicate a role for oxidative stress. The level of oxidative stress in tissues is determined by an imbalance between reactive oxygen species production and antioxidant activity. This study aimed to investigate the superoxide generating NADPH oxidase (NOX) enzyme and antioxidant enzyme systems in murine adenocarcinoma tumour-bearing cachectic mice. Methods - Superoxide levels, mRNA levels of NOX enzyme subunits and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidise (GPx) and catalase was measured in the skeletal muscle of mice with cancer and cancer cachexia. Protein expression levels of NOX enzyme subunits and antioxidant enzyme activity was also measured in the same muscle samples. Results - Superoxide levels increased 1.4-fold in the muscle of mice with cancer cachexia, and this was associated with a decrease in mRNA of NOX enzyme subunits, NOX2, p40phox and p67phox along with the antioxidant enzymes SOD1, SOD2 and GPx. Cancer cachexia was also associated with a 1.3-fold decrease in SOD1 and 2.0-fold decrease in GPx enzyme activity. Conclusion - Despite increased superoxide levels in cachectic skeletal muscle, NOX enzyme subunits, NOX2, p40phox and p67phox, were downregulated along with the expression and activity of the antioxidant enzymes. Therefore, the increased superoxide levels in cachectic skeletal muscle may be attributed to the reduction in the activity of endogenous antioxidant enzymes.
Resumo:
Treatment of C2C12 myotubes with a tumour-derived proteolysis-inducing factor (PIF) at concentrations between 1 and 10 nM was shown to stimulate the activity of the apoptotic initiator caspases-8 and -9 and the apoptotic effector caspases-2,-3 and -6. This increased caspase activity was attenuated in myotubes pretreated with 50 μM eicosapentaenoic acid (EPA). At least part of the increase in caspase activity may be related to the increased proteasome proteolytic activity, since a caspase-3 inhibitor completely attenuated the PIF-induced increase in 'chymotrypsin-like' enzyme activity, the predominant proteolytic activity of the proteasome. However, Western blot analysis showed that PIF induced an increase in expression of the active form of caspase-3, which was also attenuated by EPA. Further Western blot analysis showed PIF increased the cytosolic content of cytochrome c, as well as expression of the pro-apoptotic protein bax but not the antiapoptotic protein bcl-2, which were both attenuated by 50 μM EPA. Induction of apoptosis by PIF in murine myotubes was confirmed by an increase in free nucleasomes formation and increased DNA fragmentation evidenced by a nucleasomal ladder typical of apoptotic cells. This process was again inhibited by pre-incubation with EPA. These results suggest that in addition to activating the proteasome, PIF induces apoptosis in C2C12 myotubes, possibly through the common intermediate arachidonic acid. Both of these processes would contribute to the loss of skeletal muscle in cancer cachexia.
Resumo:
A scalable synthetic muscle has been constructed that transducts nanoscale molecular shape changes into macroscopic motion. The working material, which deforms affinely in response to a pH stimulus, is a self-assembled block copolymer comprising nanoscopic hydrophobic domains in a weak polyacid matrix. A device has been assembled where the muscle does work on a cantilever and the force generated has been measured. When coupled to a chemical oscillator this provides a free running chemical motor that generates a peak power of 20 mW kg 1 by the serial addition of 10 nm shape changes that scales over 5 orders of magnitude. It is the nanostructured nature of the gel that gives rise to the affine deformation and results in a robust working material for the construction of scalable muscle devices.
Resumo:
The purpose of this study was to produce a well-characterised electrospun polystyrene scaffold which could be used routinely for three-dimensional (3D) cell culture experimentation. A linear relationship (p<0.01p<0.01) between three principal process variables (applied voltage, working distance and polymer concentration) and fibre diameter was reliably established enabling a mathematical model to be developed to standardise the electrospinning process. Surface chemistry and bulk architecture were manipulated to increase wetting and handling characteristics, respectively. X-ray photoelectron spectroscopy (XPS) confirmed the presence of oxygen-containing groups after argon plasma treatment, resulting in a similar surface chemistry to treated tissue culture plastic. The bulk architecture of the scaffolds was characterised by scanning electron microscopy (SEM) to assess the alignment of both random and aligned electrospun fibres, which were calculated to be 0.15 and 0.66, respectively. This compared to 0.51 for collagen fibres associated with native tissue. Tensile strength and strain of approximately of 0.15 MPa and 2.5%, respectively, allowed the scaffolds to be routinely handled for tissue culture purposes. The efficiency of attachment of smooth muscle cells to electrospun scaffolds was assessed using a modified 3-[4,5-dimethyl(thiazol-2yl)-3,5-diphery] tetrazolium bromide assay and cell morphology was assessed by phalloidin-FITC staining of F-actin. Argon plasma treatment of electrospun polystyrene scaffold resulted in significantly increased cell attachment (p<0.05p<0.05). The alignment factors of the actin filaments were 0.19 and 0.74 for the random and aligned scaffold respectively, compared to 0.51 for the native tissue. The data suggests that electrospinning of polystyrene generates 3D scaffolds which complement polystyrene used in 2D cell culture systems.
Resumo:
Objective: Loss of skeletal muscle is the most debilitating feature of cancer cachexia, and there are few treatments available. The aim of this study was to compare the anticatabolic efficacy of L-leucine and the leucine metabolite β-hydroxy-β-methylbutyrate (Ca-HMB) on muscle protein metabolism, both invitro and invivo. Methods: Studies were conducted in mice bearing the cachexia-inducing murine adenocarcinoma 16 tumor, and in murine C2 C12 myotubes exposed to proteolysis-inducing factor, lipopolysaccharide, and angiotensin II. Results: Both leucine and HMB were found to attenuate the increase in protein degradation and the decrease in protein synthesis in murine myotubes induced by proteolysis-inducing factor, lipopolysaccharide, and angiotensin II. However, HMB was more potent than leucine, because HMB at 50 μM produced essentially the same effect as leucine at 1 mM. Both leucine and HMB reduced the activity of the ubiquitin-proteasome pathway as measured by the functional (chymotrypsin-like) enzyme activity of the proteasome in muscle lysates, as well as Western blot quantitation of protein levels of the structural/enzymatic proteasome subunits (20 S and 19 S) and the ubiquitin ligases (MuRF1 and MAFbx). Invivo studies in mice bearing the murine adenocarcinoma 16 tumor showed a low dose of Ca-HMB (0.25 g/kg) tobe 60% more effective than leucine (1 g/kg) in attenuating loss of body weight over a 4-d period. Conclusion: These results favor the clinical feasibility of using Ca-HMB over high doses of leucine for the treatment of cancer cachexia. © 2014 Elsevier Inc.
Resumo:
Complement factor B and C2 are two central serine proteases of the alternative and classical complement pathways, respectively, that serve as the catalytic subunits of the C3 convertase. Research has been completed using a female Japanese medaka fish, (Oryzias latipes), and other teleost and elasmobrach species in order to isolate eDNA clones and perform linkage analysis of the Bf/C2 gene(s). To further analyze the evolution of the complement system in teleosts, different tissues than the ones from previous studies of medaka fish were analyzed for the constitutive gene expression of factor B and C2. Bf/C2 sequences were amplified by reverse transcription-polymerase chain reaction with primers corresponding to the common amino acid sequences shared by mammalian Bf and C2. Agarose gel electrophoresis was used to visualize sample bands and to calculate the concentration of gene expression of the Bf/C2 gene(s) in each tissue. All five tissue types, kidney, liver, muscle, testis, and spleen from a male medaka fish demonstrated Bf/C2 gene(s) expression, confirming that the messages of Bf/C2 gene(s) are distributed throughout the medaka fish. Tissues of the spleen, liver, and kidney contained the highest concentrations of expression of Bf/C2 gene( s ), while tissues of the muscle and testis contained the lowest concentrations. This research also determined that RT-PCR allowed for more sensitive analysis of gene expression than other molecular biology techniques such as Northern blotting analysis.
Resumo:
Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC and SMC, coupled EC-SMC and a multi-cellular vessel segment with deterministic and stochastic descriptions of the cellular components were developed, and the intra- and inter-cellular spatiotemporal Ca2+ mobilization was examined. Coupled EC-SMC model simulations captured the experimentally observed localized subcellular EC Ca2+ events arising from the opening of EC transient receptor vanilloid 4 (TRPV4) channels and inositol triphosphate receptors (IP3Rs). These localized EC Ca2+ events result in endothelium-derived hyperpolarization (EDH) and Nitric Oxide (NO) production which transmit to the adjacent SMCs to ultimately result in vasodilation. The model examined the effect of heterogeneous distribution of cellular components and channel gating kinetics in determination of the amplitude and spread of the Ca2+ events. The simulations suggested the necessity of co-localization of certain cellular components for modulation of EDH and NO responses. Isolated EC and SMC models captured intracellular Ca2+ wave like activity and predicted the necessity of non-uniform distribution of cellular components for the generation of Ca2+ waves. The simulations also suggested the role of membrane potential dynamics in regulating Ca2+ wave velocity. The multi-cellular vessel segment model examined the underlying mechanisms for the intercellular synchronization of spontaneous oscillatory Ca2+ waves in individual SMC. From local subcellular events to integrated macro-scale behavior at the vessel level, the developed multi-scale models captured basic features of vascular Ca2+ signaling and provide insights for their physiological relevance. The models provide a theoretical framework for assisting investigations on the regulation of vascular tone in health and disease.
Resumo:
Purpose: Recent studies have documented a link between axial myopia and ciliary muscle morphology; yet, the variation in biometric characteristics of the emmetropic ciliary muscle are not fully known. Ciliary muscle morphology, including symmetry, was investigated between both eyes of emmetropic participants and correlated to ocular biometric parameters. Methods: Anterior segment optical coherence tomography (Zeiss, Visante) was utilised to image both eyes of 49 emmetropic participants (mean spherical equivalent refractive error (MSE) ≥ -0.55; < +0.75 D), aged 19 to 26 years. High resolution images were obtained of nasal and temporal aspects of the ciliary muscle in the relaxed state. MSE of both eyes was recorded using the Grand Seiko WAM 5500; axial length (AXL), anterior chamber depth (ACD) and lens thickness (LT) of the right eye were obtained using the Haag-streit Lenstar LS 900 biometer. A bespoke semi-objective analysis programme was used to measure a range of ciliary muscle parameters. Results: Temporal ciliary muscle overall length (CML) was greater than nasal CML, in both eyes (right: 3.58 ± 0.40 mm and 3.85 ± 0.39 mm for nasal and temporal aspects, respectively, P < 0.001; left: 3.65 ± 0.35 mm and 3.88 ± 0.41 mm for nasal and temporal aspects, respectively, P < 0.001). Temporal ciliary muscle thickness (CMT) was greater than nasal CMT at 2 mm and 3 mm from the scleral spur (CM2 and CM3, respectively) in each eye (right CM2: 0.29 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; left CM2: 0.30 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; right CM3: 0.13 ± 0.05 mm and 0.16 ± 0.04 mm for nasal and temporal aspects, respectively, P < 0.001; left CM3: 0.14 ± 0.04 mm and 0.17 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001). AXL was positively correlated with ciliary muscle anterior length (AL) (e.g. P < 0.001, r2 = 0.262 for left temporal aspect), CML (P = 0.003, r2 = 0.175 for right nasal aspect) and ACD (P = 0.01, r2 = 0.181). Conclusions: Morphological characteristics of the ciliary muscle in emmetropic eyes display high levels of symmetry between the eyes. Greater CML and AL are linked to greater AXL and ACD, indicating ciliary muscle growth with normal ocular development.
Resumo:
Tissue engineering of biomimetic skeletal muscle may lead to development of new therapies for myogenic repair and generation of improved in vitro models for studies of muscle function, regeneration, and disease. For the optimal therapeutic and in vitro results, engineered muscle should recreate the force-generating and regenerative capacities of native muscle, enabled respectively by its two main cellular constituents, the mature myofibers and satellite cells (SCs). Still, after 20 years of research, engineered muscle tissues fall short of mimicking contractile function and self-repair capacity of native skeletal muscle. To overcome this limitation, we set the thesis goals to: 1) generate a highly functional, self-regenerative engineered skeletal muscle and 2) explore mechanisms governing its formation and regeneration in vitro and survival and vascularization in vivo.
By studying myogenic progenitors isolated from neonatal rats, we first discovered advantages of using an adherent cell fraction for engineering of skeletal muscles with robust structure and function and the formation of a SC pool. Specifically, when synergized with dynamic culture conditions, the use of adherent cells yielded muscle constructs capable of replicating the contractile output of native neonatal muscle, generating >40 mN/mm2 of specific force. Moreover, tissue structure and cellular heterogeneity of engineered muscle constructs closely resembled those of native muscle, consisting of aligned, striated myofibers embedded in a matrix of basal lamina proteins and SCs that resided in native-like niches. Importantly, we identified rapid formation of myofibers early during engineered muscle culture as a critical condition leading to SC homing and conversion to a quiescent, non-proliferative state. The SCs retained natural regenerative capacity and activated, proliferated, and differentiated to rebuild damaged myofibers and recover contractile function within 10 days after the muscle was injured by cardiotoxin (CTX). The resulting regenerative response was directly dependent on the abundance of SCs in the engineered muscle that we varied by expanding starting cell population under different levels of basic fibroblast growth factor (bFGF), an inhibitor of myogenic differentiation. Using a dorsal skinfold window chamber model in nude mice, we further demonstrated that within 2 weeks after implantation, initially avascular engineered muscle underwent robust vascularization and perfusion and exhibited improved structure and contractile function beyond what was achievable in vitro.
To enhance translational value of our approach, we transitioned to use of adult rat myogenic cells, but found that despite similar function to that of neonatal constructs, adult-derived muscle lacked regenerative capacity. Using a novel platform for live monitoring of calcium transients during construct culture, we rapidly screened for potential enhancers of regeneration to establish that many known pro-regenerative soluble factors were ineffective in stimulating in vitro engineered muscle recovery from CTX injury. This led us to introduce bone marrow-derived macrophages (BMDMs), an established non-myogenic contributor to muscle repair, to the adult-derived constructs and to demonstrate remarkable recovery of force generation (>80%) and muscle mass (>70%) following CTX injury. Mechanistically, while similar patterns of early SC activation and proliferation upon injury were observed in engineered muscles with and without BMDMs, a significant decrease in injury-induced apoptosis occurred only in the presence of BMDMs. The importance of preventing apoptosis was further demonstrated by showing that application of caspase inhibitor (Q-VD-OPh) yielded myofiber regrowth and functional recovery post-injury. Gene expression analysis suggested muscle-secreted tumor necrosis factor-α (TNFα) as a potential inducer of apoptosis as common for muscle degeneration in diseases and aging in vivo. Finally, we showed that BMDM incorporation in engineered muscle enhanced its growth, angiogenesis, and function following implantation in the dorsal window chambers in nude mice.
In summary, this thesis describes novel strategies to engineer highly contractile and regenerative skeletal muscle tissues starting from neonatal or adult rat myogenic cells. We find that age-dependent differences of myogenic cells distinctly affect the self-repair capacity but not contractile function of engineered muscle. Adult, but not neonatal, myogenic progenitors appear to require co-culture with other cells, such as bone marrow-derived macrophages, to allow robust muscle regeneration in vitro and rapid vascularization in vivo. Regarding the established roles of immune system cells in the repair of various muscle and non-muscle tissues, we expect that our work will stimulate the future applications of immune cells as pro-regenerative or anti-inflammatory constituents of engineered tissue grafts. Furthermore, we expect that rodent studies in this thesis will inspire successful engineering of biomimetic human muscle tissues for use in regenerative therapy and drug discovery applications.
Resumo:
In an attempt to improve the current understanding of the adaptive response to exercise in humans, this dissertation performed a series of studies designed to examine the impact of training intensity and mode on aerobic capacity and performance, fibre-type specific adaptations to training, and individual patterns of response across molecular, morphological and genetic factors. Project #1 determined that training intensity, session dose, baseline VO2max and total training volume do not influence the magnitude of change in VO2max by performing a meta-regression, and meta-analysis of 28 different studies. The intensity of training had no effect on the magnitude of increase in maximal oxygen uptake in young healthy participants, but similar adaptations were achieved with lower training doses following high intensity training. Project # 2 determined the acute molecular response, and training-induced adaptations in aerobic performance, aerobic capacity and muscle phenotype following high-intensity interval training (HIT) or endurance exercise (END). The acute molecular response (fibre recruitment and signal activation) and training-induced adaptations in aerobic capacity, aerobic performance, and muscle phenotype were similar following HIT and END. Project # 3 examined the impact of baseline muscle morphology and molecular characteristics on the training response, and if muscle adaptations are coordinated. The muscle phenotype of individuals who experience the largest improvements (high responders) were lower before training for some muscle characteristics and molecular adaptations were coordinated within individual participants. Project # 4 examined the impact of 2 different intensities of HIT on the expression of nuclear and mitochondrial encoded genes targeted by PGC-1α. A systematic upregulation of nuclear and mitochondrial encoded genes was not present in the early recovery period following acute HIT, but the expression of mitochondrial genes were coordinated at an individual level. Collectively, results from the current dissertation contribute to our understanding of the molecular mechanisms influencing skeletal muscle and whole-body adaptive responses to acute exercise and training in humans.
Resumo:
International audience
Resumo:
L-carnitine is required for the transfer of long-chain fatty acids from the cytosol to the mitochondrial matrix for 13-oxidation of them and ractopamine, beta adrenergic agonists, have potential stimulating lipolysis and altering rates of protein degradation and synthesis. Present study was carried out to improve lipid body oxidation and protein-sparing action of fish through addition of L-carnitine and ractopamine to diet of rainbow trout, Oncorhynchus mykiss, Walbaum 1972. An eight-week feeding trial was carried out to evaluate the effects of supplementation of tree levels of L-carnitine tartrate (0, 1 and 2 g/kg) and two levels of ractopamine hydrochloride (0 and 10 ppm) on growth performance, fillet muscle fatty acid compositions and blood biochemical parameters in 288 juvenile rainbow trout (130 g) at 3X2 factorial experimental design. Ractopamine and 1 g/kg carnitine improved the specific growth rate, feed conversion ratio, protein efficiency ratio and weight gain at the end of experiment. The protein and lipid contents of fillet muscle were affected by the inclusion of 10 mg/kg ractopamine in the diet, increasing crude protein and reducing crude fat (P<0.05) of fish fillet muscle. The highest protein and lowest fat contents of fish fillet were observed in diet that contains 2 g/kg carnitine plus ractopamine. Ractopamine and carnitine increased levels of albumin, total protein and globulin in fish blood serum, but carnitine increased triacylglycerol and cholesterol. Fatty acids compositions of fish fillet were also affected by ractopamine and carnitine. All fatty acids except for eicosapentaenoic acid and docosahexaenoic acid, were increased by dietary supplementation of ractopamine. Total saturated fatty acids were not affected by carnitine. Supplementation (P>0.05). However, total n-3 poly unsaturated fatty acids were reduced by carnitine supplementation. A significant interaction was observed between ractopamine and carnitine supplementation regarding the saturated (P<0.01) and n-3 poly unsaturated fatty acid (P<0.001) of fish fillet. This study shows that supplementation of 1 g/kg carnitine and 10 ppm ractopamine could improve performance of juvenile rainbow trout and their combination in diet results in protein increment, fat reduction and change in profile of fatty acids in fillet muscle.
Resumo:
Recent work has shown that the cardiac outflow tract of sharks and chimaeras does not consist of a single myocardial component, the conus arteriosus, as classically accepted, but two, namely, the myocardial conus arteriosus and the non-myocardial bulbus arteriosus. However, the anatomical composition of the outflow tract of the batoid hearts remains unknown. The present study was designed to fill this gap. The material examined consisted of hearts of two species of rays, namely, the Mediterranean starry ray (Raja asterias) and sandy ray (Leucoraja circularis). They were studied using scanning electron microscopy, and histochemical and inmunohistochemical techniques. In both species, the outflow tract consists of two components, proximal and distal with regard to the ventricle. The proximal component is the conus arteriosus; it is characterized by the presence of compact myocardium in its wall and several transverse rows of pocket-shaped valves at its luminal side. Each valve consists of a leaflet and its supporting sinus. Histologically, the leaflet has two fibrosas, inner and outer, and a middle coat, the spongiosa. The distal component lacks myocardium. Its wall consists of smooth muscle cells, elastic fibers and collagen. Thus, it shows an arterial-like structure. However, it differs from the aorta because it is covered by the epicardium and crossed by coronary arteries. These findings indicate that the distal component is morphologically equivalent to the bulbus arteriosus of sharks and chimaeras. In contrast to foregoing descriptions, the valves of the first transverse row are distally anchored to the bulbus arteriosus and not to the ventral aorta. Our findings give added support to the notion that presence of a bulbus arteriosus at the arterial pole of the heart is common to all chondrichtyans, and not an apomorphy of actinopterygians as classically thought.