957 resultados para Hermite-Biehler theorem


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we solve the duplication problem P_n(ax) = sum_{m=0}^{n}C_m(n,a)P_m(x) where {P_n}_{n>=0} belongs to a wide class of polynomials, including the classical orthogonal polynomials (Hermite, Laguerre, Jacobi) as well as the classical discrete orthogonal polynomials (Charlier, Meixner, Krawtchouk) for the specific case a = −1. We give closed-form expressions as well as recurrence relations satisfied by the duplication coefficients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Der in dieser Arbeit wesentliche Fokus ist die Realisierung eines anwendungsbezogenen Konzeptes zur Förderung stochastischer Kompetenzen im Mathematikunterricht, die sich auf Entscheiden und Urteilen unter Unsicherheit beziehen. Von zentraler Bedeutung ist hierbei die alltagsrelevante Kompetenz, mit Problemen um bedingte Wahrscheinlichkeiten und Anwendungen des Satzes von Bayes umgehen zu können, die i.w.S. mit „Bayesianischem Denken“ bezeichnet wird. Die historische und theoretische Grundlage der Arbeit sind kognitionspsychologische Erkenntnisse zum menschlichen Urteilen unter Unsicherheit: Intuitive Formen probabilistischen Denkens basieren auf Häufigkeitsanschauungen (z.B. Piaget & Inhelder, 1975; Gigerenzer, 1991). Meine didaktischen Analysen ergaben aber, dass der Umgang mit Unsicherheit im üblichen Stochastikunterricht nach einer häufigkeitsbasierten Einführung des Wahrscheinlichkeitsbegriffes (der ja bekanntlich vielfältige Interpretationsmöglichkeiten aufweist) nur noch auf Basis der numerischen Formate für Wahrscheinlichkeiten (z.B. Prozentwerte, Dezimalbrüche) und entsprechenden Regeln gelehrt wird. Damit werden m.E. grundlegende Intuitionen von Schülern leider nur unzureichend beachtet. Das in dieser Arbeit detailliert entwickelte „Didaktische Konzept der natürlichen Häufigkeiten“ schlägt somit die konsequente Modellierung probabilistischer Probleme mit Häufigkeitsrepräsentationen vor. Auf Grundlage empirischer Laborbefunde und didaktischer Analysen wurde im Rahmen der Arbeit eine Unterrichtsreihe „Authentisches Bewerten und Urteilen unter Unsicherheit“ für die Sekundarstufe I entwickelt (Wassner, Biehler, Schweynoch & Martignon, 2004 auch als Band 5 der KaDiSto-Reihe veröffentlicht). Zum einen erfolgte eine Umsetzung des „Didaktischen Konzeptes der natürlichen Häufigkeiten“, zum anderen wurde ein Zugang mit hohem Realitätsbezug verwirklicht, in dem so genannte „allgemeinere Bildungsaspekte“ wie Lebensvorbereitung, eigenständige Problemlösefähigkeit, kritischer Vernunftgebrauch, Sinnstiftung, motivationale Faktoren etc. wesentliche Beachtung fanden. Die Reihe wurde auch im Rahmen dieser Arbeit in der Sekundarstufe I (fünf 9. Klassen, Gymnasium) implementiert und daraufhin der Unterrichtsgang detailliert bewertet und analysiert. Diese Arbeit stellt die Dissertation des Verfassers dar, die an der Universität Kassel von Rolf Biehler betreut wurde. Sie ist identisch mit der Erstveröffentlichung 2004 im Franzbecker Verlag, Hildesheim, der der elektronischen Veröffentlichung im Rahmen von KaDiSto zugestimmt hat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Unterrichtsreihe basiert auf zwei grundlegenden Vorstellungen zum Lernen und Lehren von Wahrscheinlichkeitsrechnung für Anfänger in der Sekundarstufe I. Zum einen ist die grundsätzliche Überzeugung der Autoren, dass ein sinnvoller und gewinnbringender Unterricht in Stochastik über den aufwendigeren Weg möglichst authentischer und konkreter Anwendungen im täglichen Leben gehen sollte. Demzufolge reicht eine Einkleidung stochastischer Probleme in realistisch wirkende Kontexte nicht, sondern es sollte eine intensive Erarbeitung authentischer Problemstellungen, z.B. mit Hilfe von realen Medientexten, erfolgen. Die Schüler sollen vor allem lernen, reale Probleme mathematisch zu modellieren und gefundene mathematische Ergebnisse für die reale Situation zu interpretieren und kritisch zu diskutieren. Eine weitere Besonderheit gegenüber traditionellen Zugängen zur Wahrscheinlichkeitsrechnung basiert auf kognitionspsychologischen Ergebnissen zur menschlichen Informationsverarbeitung. Durch eine Serie von Studien wurde gezeigt, dass Menschen – und natürlich auch Schüler – große Probleme haben, mit Wahrscheinlichkeiten (also auf 1 normierte Maße) umzugehen. Als viel einfacher und verständnisfördernder stellte sich die kognitive Verarbeitung von Häufigkeiten (bzw. Verhältnissen von natürlichen Zahlen) heraus. In dieser Reihe wird deshalb auf eine traditionelle formale Einführung der Bayesschen Regel verzichtet und es werden spezielle, auf Häufigkeiten basierende Hilfsmittel zur Lösungsfindung verwendet. Die erwähnten Studien belegen den Vorteil dieser Häufigkeitsdarstellungen gegenüber traditionellen Methoden im Hinblick auf den sofortigen und insbesondere den längerfristigen Lernerfolg (vgl. umfassend zu diesem Thema C. Wassner (2004). Förderung Bayesianischen Denkens, Hildesheim: Franzbecker, http://nbn-resolving.org/urn:nbn:de:hebis:34-2006092214705). Die vorliegende Schrift wurde zuerst im Jahre 2004 als Anhang zur o.g. Schrift bei Franzbecker Hildesheim veröffentlicht. Der Verlag hat einer elektronischen Veröffentlichung in der KaDiSto-Reihe zugestimmt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The object of research presented here is Vessiot's theory of partial differential equations: for a given differential equation one constructs a distribution both tangential to the differential equation and contained within the contact distribution of the jet bundle. Then within it, one seeks n-dimensional subdistributions which are transversal to the base manifold, the integral distributions. These consist of integral elements, and these again shall be adapted so that they make a subdistribution which closes under the Lie-bracket. This then is called a flat Vessiot connection. Solutions to the differential equation may be regarded as integral manifolds of these distributions. In the first part of the thesis, I give a survey of the present state of the formal theory of partial differential equations: one regards differential equations as fibred submanifolds in a suitable jet bundle and considers formal integrability and the stronger notion of involutivity of differential equations for analyzing their solvability. An arbitrary system may (locally) be represented in reduced Cartan normal form. This leads to a natural description of its geometric symbol. The Vessiot distribution now can be split into the direct sum of the symbol and a horizontal complement (which is not unique). The n-dimensional subdistributions which close under the Lie bracket and are transversal to the base manifold are the sought tangential approximations for the solutions of the differential equation. It is now possible to show their existence by analyzing the structure equations. Vessiot's theory is now based on a rigorous foundation. Furthermore, the relation between Vessiot's approach and the crucial notions of the formal theory (like formal integrability and involutivity of differential equations) is clarified. The possible obstructions to involution of a differential equation are deduced explicitly. In the second part of the thesis it is shown that Vessiot's approach for the construction of the wanted distributions step by step succeeds if, and only if, the given system is involutive. Firstly, an existence theorem for integral distributions is proven. Then an existence theorem for flat Vessiot connections is shown. The differential-geometric structure of the basic systems is analyzed and simplified, as compared to those of other approaches, in particular the structure equations which are considered for the proofs of the existence theorems: here, they are a set of linear equations and an involutive system of differential equations. The definition of integral elements given here links Vessiot theory and the dual Cartan-Kähler theory of exterior systems. The analysis of the structure equations not only yields theoretical insight but also produces an algorithm which can be used to derive the coefficients of the vector fields, which span the integral distributions, explicitly. Therefore implementing the algorithm in the computer algebra system MuPAD now is possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that Stickelberger-Swan theorem is very important for determining reducibility of polynomials over a binary field. Using this theorem it was determined the parity of the number of irreducible factors for some kinds of polynomials over a binary field, for instance, trinomials, tetranomials, self-reciprocal polynomials and so on. We discuss this problem for type II pentanomials namely x^m +x^{n+2} +x^{n+1} +x^n +1 \in\ IF_2 [x]. Such pentanomials can be used for efficient implementing multiplication in finite fields of characteristic two. Based on the computation of discriminant of these pentanomials with integer coefficients, it will be characterized the parity of the number of irreducible factors over IF_2 and be established the necessary conditions for the existence of this kind of irreducible pentanomials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various results on parity of the number of irreducible factors of given polynomials over finite fields have been obtained in the recent literature. Those are mainly based on Swan’s theorem in which discriminants of polynomials over a finite field or the integral ring Z play an important role. In this paper we consider discriminants of the composition of some polynomials over finite fields. The relation between the discriminants of composed polynomial and the original ones will be established. We apply this to obtain some results concerning the parity of the number of irreducible factors for several special polynomials over finite fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Rahmen der Arbeit wird ein Unterrichtskonzept für den Leistungskurs Stochastik in der gymnasialen Oberstufe vorgestellt, bei welchem Computersimulationen und Lernumgebungen mit der Software FATHOM über das gesamte Kurshalbjahr unterstützend eingesetzt werden. Der experimentelle Zugang zur Wahrscheinlichkeit ergänzt den theoretischen Zugang und soll im Sinn eines handlungsorientierten Lernens die Motivation der Schülerinnen und Schüler fördern. Das Unterrichtskonzept enthält drei Schwerpunktsetzungen: • Einstieg in den Stochastikkurs mit Simulationen • Binomialverteilung • Das Testen von Hypothesen Die Arbeit konzentriert sich in der Darstellung und der Analyse auf den Einstieg in den Stochastikkurs mit Simulationen und computergestützten Lernumgebungen. Der Erwerb der Simulations- und Fathomkompetenzen in der Einstiegsphase wird auf inhaltlicher Seite verknüpft mit dem Wahrscheinlichkeitsbegriff, mit dem Gesetz der großen Zahl, sowie mit weiteren stochastischen Grundlagen. Das Unterrichtskonzept zum Einstieg in das Kurshalbjahr Stochastik wird ausführlich vorgestellt, zu den beiden anderen genannten Schwerpunkten werden die entwickelten Unterrichtskonzepte knapp erläutert. Die ausführlich kommentierten Unterrichtsmaterialien zu allen drei Schwerpunkten sind als Band 2 der KaDiSto-Schriftenreihe publiziert. Im Rahmen unterrichtlicher Erprobungen wurden verschiedene empirische Untersuchungen durchgeführt. Bei diesen Untersuchungen liegt ein Schwerpunkt auf der Transkriptanalyse von Videos des Bildschirmgeschehens und der simultan hierzu aufgenommenen verbalen Kommunikation während der Schülerarbeitsphasen am Computer. Diese Videos ermöglichen tiefer gehende Einblicke in die Kompetenzentwicklung der Schülerinnen und Schüler, in auftretende Probleme bei der Erstellung der Computersimulationen und in den Umgang der Schülerinnen und Schüler mit den Aufgabenstellungen. Die Analyse ausgewählter Transkriptausschnitte wird eingebettet in die Schilderung des Unterrichtsverlaufs auf der Basis von Unterrichtsprotokollen. Weiter wird die Bearbeitung einer komplexen Simulationsaufgabe in einer notenrelevanten Klausur nach Abschluss der Einstiegsphase analysiert. Es werden die Ergebnisse eines Eingangstests vor Beginn der Einstiegsphase und eines Ausgangstests im Anschluss an die Einstiegsphase geschildert. Ergänzend werden die Ergebnisse einer Schülerbefragung vorgestellt. Zum Abschluss der Arbeit wird eine Gesamtbetrachtung des Unterrichtskonzepts vorgenommen, bei der die Stärken aber auch zentrale Probleme des Konzepts beschrieben und teilweise verallgemeinert werden. Aus diesen Betrachtungen werden weitere Entwicklungsmöglichkeiten des geschilderten Projekts abgeleitet. Die Arbeit verfolgt einen stark unterrichtspraktischen Ansatz. Das methodische Vorgehen ist im Bereich einer Design-Research-Studie angesiedelt. Der Autor selber ist Lehrer an dem Kasseler Oberstufengymnasium Jacob-Grimm-Schule und hat über einen längeren Zeitraum im Rahmen einer Abordnung in der Arbeitsgruppe Mathematik-Didaktik der Universität Kassel mitgearbeitet. Die Arbeit stellt die Dissertation des Verfassers dar, die an der Universität Kassel von Prof. Dr. Rolf Biehler betreut wurde. Sie ist identisch mit der Erstveröffentlichung 2008 im Franzbecker Verlag, Hildesheim, der der elektronischen Veröffentlichung im Rahmen von KaDiSto zugestimmt hat

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die q-Analysis ist eine spezielle Diskretisierung der Analysis auf einem Gitter, welches eine geometrische Folge darstellt, und findet insbesondere in der Quantenphysik eine breite Anwendung, ist aber auch in der Theorie der q-orthogonalen Polynome und speziellen Funktionen von großer Bedeutung. Die betrachteten mathematischen Objekte aus der q-Welt weisen meist eine recht komplizierte Struktur auf und es liegt daher nahe, sie mit Computeralgebrasystemen zu behandeln. In der vorliegenden Dissertation werden Algorithmen für q-holonome Funktionen und q-hypergeometrische Reihen vorgestellt. Alle Algorithmen sind in dem Maple-Package qFPS, welches integraler Bestandteil der Arbeit ist, implementiert. Nachdem in den ersten beiden Kapiteln Grundlagen geschaffen werden, werden im dritten Kapitel Algorithmen präsentiert, mit denen man zu einer q-holonomen Funktion q-holonome Rekursionsgleichungen durch Kenntnis derer q-Shifts aufstellen kann. Operationen mit q-holonomen Rekursionen werden ebenfalls behandelt. Im vierten Kapitel werden effiziente Methoden zur Bestimmung polynomialer, rationaler und q-hypergeometrischer Lösungen von q-holonomen Rekursionen beschrieben. Das fünfte Kapitel beschäftigt sich mit q-hypergeometrischen Potenzreihen bzgl. spezieller Polynombasen. Wir formulieren einen neuen Algorithmus, der zu einer q-holonomen Rekursionsgleichung einer q-hypergeometrischen Reihe mit nichttrivialem Entwicklungspunkt die entsprechende q-holonome Rekursionsgleichung für die Koeffizienten ermittelt. Ferner können wir einen neuen Algorithmus angeben, der umgekehrt zu einer q-holonomen Rekursionsgleichung für die Koeffizienten eine q-holonome Rekursionsgleichung der Reihe bestimmt und der nützlich ist, um q-holonome Rekursionen für bestimmte verallgemeinerte q-hypergeometrische Funktionen aufzustellen. Mit Formulierung des q-Taylorsatzes haben wir schließlich alle Zutaten zusammen, um das Hauptergebnis dieser Arbeit, das q-Analogon des FPS-Algorithmus zu erhalten. Wolfram Koepfs FPS-Algorithmus aus dem Jahre 1992 bestimmt zu einer gegebenen holonomen Funktion die entsprechende hypergeometrische Reihe. Wir erweitern den Algorithmus dahingehend, dass sogar Linearkombinationen q-hypergeometrischer Potenzreihen bestimmt werden können. ________________________________________________________________________________________________________________

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unter dem Namen SINUS werden seit über 10 Jahren bundesweit erfolgreiche Projekte zur Weiterentwicklung des mathematisch-naturwissenschaftlichen Unterrichts durchgeführt. Das Projekt SINUS-Quest, dessen Abschlussbericht hier vorgelegt wird, entstand aus dem Anliegen der Projektleitung von SINUS-Hessen, eine eigene Evaluation des hessischen Projektes SINUS-Transfer (2005 – 2007) durchzuführen. Die Evaluation sollte nicht nur summativ sein, sondern den SINUS-Prozess selber mit beeinflussen. Dazu sollten schulspezifische Befragungsergebnisse an die einzelnen Schulen zurückgemeldet werden, und zwar unter Bezugnahme auf den hessischen Durchschnitt, um die Stärken und den Entwicklungsbedarf einzelner Schulteams gezielt identifizieren und bei der Weiterentwicklung berücksichtigen zu können. Im Jahre 2005 wurde die Projektgruppe SINUS-Quest für die Konzipierung und die Durchführung des Evaluationsprojektes gegründet, und zwar als Kooperationsprojekt zwischen der SINUS-Projektleitung, dem Institut für Qualitätsentwicklung (IQ) in Wiesbaden, vertreten durch die Arbeitseinheit für „Empirische Fundierung der Schulentwicklung und Qualitätssicherung der Evaluation“ und der mathematikdidaktischen Arbeitsgruppe von Prof. Dr. Rolf Biehler an der Universität Kassel. An der Vorbefragung haben ca. 2000 hessische Lehrerinnen und Lehrer teilgenommen, an der Nachbefragung ca. 1200. Ihnen allen sei an dieser Stelle für die aktive Mitarbeit herzlich gedankt. Wir bedanken uns besonders herzlich bei den Set-Koordinatoren und Koordinatorinnen und den SINUS-Schulprojektleitungen, ohne die der sehr gute Rücklauf unserer Fragebögen nicht zustande gekommen wäre. Ein herzlicher Dank geht auch an das Leibniz-Institut für die Pädagogik der Naturwissenschaften (IPN) in Kiel, das als SINUS-Projektträger SINUS-Quest finanziell gefördert hat. Kassel, im September 2009 Rolf Biehler, Pascal Fischer, Christoph Maitzen, Carmen Maxara, Tanja Nieder

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method of Least Squares is due to Carl Friedrich Gauss. The Gram-Schmidt orthogonalization method is of much younger date. A method for solving Least Squares Problems is developed which automatically results in the appearance of the Gram-Schmidt orthogonalizers. Given these orthogonalizers an induction-proof is available for solving Least Squares Problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das vorliegende Dokument ist in einem Gemeinschaftsprojekt der Universität Kassel und der Elisabeth-Knipping-Schule Kassel entstanden. Im Rahmen der fachbezogenen schulpraktischen Stu-dien für das Fach Mathematik ist eine Unterrichtsreihe zur Beschreibenden Statistik mit Softwareein-satz für die Fachoberschule Klasse 11 entwickelt und umgesetzt worden. Dieses Dokument fasst Ideen, Materialien und didaktische Kommentare der durchgeführten Unterrichtsreihe in aufbereiteter Form zusammen. Viele der konzeptionellen Ansätze und Unterrichtsideen beruhen auf Vorarbeiten der Kassel-Paderborner Arbeitsgruppe „Interaktive Stochastik mit FATHOM“ von Prof. Dr. Rolf Biehler, Fakultät EIM, Universität Paderborn (bis 28.02.2009 Universität Kassel). Der Fokus dieser Arbeit liegt darin, Schülern der Fachoberschule die Erfahrung eines komplet-ten statistischen Untersuchungsprozesses mit Softwareeinsatz zu ermöglichen. Die Werkzeugsoftware FATHOM wurde 2006 ins Deutsche adaptiert. Seit 2008 ist eine multimediale Lernumgebung für diese Software verfügbar, die durch Tobias Hofmann, Mitglied der Arbeitsgruppe, entwickelt wurde. Im Vorfeld der Unterrichtsreihe erheben die Schüler Daten durch eine Online-Umfrage, für deren Inhalte sie mit verantwortlich sind. Zu Beginn der Unterrichtsreihe erwerben die Schüler über sechs Doppelstunden hinweg grundlegende Kenntnisse in der Datenanalyse mit der Werkzeugsoftware FATHOM anhand von Beispieldatensätzen. Dabei geht der Erwerb händischer Kompetenzen in der Datenanalyse einher mit dem Erlernen der Datendarstellung und Datenauswertung mit FATHOM. In der sich anschließenden Projektphase analysieren die Schüler in Gruppenarbeit die von ihnen erhobenen Daten. Sie lernen selbstständig Fragen zu formulieren und entsprechende Hypothesen aufzustellen sowie erhobene Daten sinnvoll darzustellen und geeignet auszuwerten. Aufgrund ihrer Analyse sollten Schüler in der Lage sein, eigenständig Antworten auf ihre eingangs gestellten Fragen und Hypothesen zu formulieren. Für das Vorstellen ihrer Datenanalyse erstellen die Schüler eine Präsentation mit einer dafür geeigneten Software. Sie lernen dabei auch das Kommunizieren und Argumentieren vor der eigenen Lerngruppe. Für jede Unterrichtseinheit in dieser Unterrichtsreihe gibt es einen Steckbrief, der den Inhalt des Unterrichts und die verfügbaren Materialien in Stichworten enthält. Desweiteren wird in jede Un-terrichtseinheit durch einen Didaktischen Kommentar eingeführt, der die grundlegende didaktische Idee charakterisiert und einen möglichen Ablauf der jeweiligen Unterrichtseinheit skizziert. Alle Mate-rialien, wie Arbeitsblätter, Folien, Übungen, Lösungen, Datensätze, Präsentationen, Projekte, Tests und Klausuren, sind im Ordner Materialien verfügbar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vom 20. bis zum 23. Februar 2013 fand die zweite Arbeitstagung des Kompetenzzentrums Hochschuldidaktik Mathematik (www.khdm.de) zum Thema „Mathematik im Übergang Schule/Hochschule und im ersten Studienjahr“ statt, auf der Forschungsergebnisse und Erfahrungen aus der Praxis zum Übergang Schule/Hochschule, zu Vor- und Brückenkurse und zum ersten Studienjahr bezogen auf die Studiengänge Bachelor und gymnasiales Lehramt Mathematik, Grund-, Haupt und Realschullehramt Mathematik, Mathematik im Service in den INT-Fächern und den nicht-INT Fächern vorgestellt und diskutiert wurden. Die Extended Abstracts geben einen Überblick über einen Großteil der Vorträge und Posterbeiträge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In diesem Werkstattbericht wollen wir den derzeitigen Arbeitsstand des Teilprojekts "Mathematik für Maschinenbauer" der AG Ing-Math vorstellen. Es werden eine Reihe von Anwendungsaufgaben, sowie deren Lösungen und das zugrunde liegende Konzept vorgestellt. Die Aufgaben sind für die Veranstaltungen Mathematik 1 und 2 für Maschinenbauer konzipiert, jedoch lässt sich das Konzept auch auf andere ingenieurwissenschaftliche Studiengänge übertragen. Das Ziel ist es mit diesen Aufgaben die Motivation zu fördern und den Studierenden die Relevanz der Mathematik bereits in den ersten Semestern zu verdeutlichen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the theory of the Navier-Stokes equations, the proofs of some basic known results, like for example the uniqueness of solutions to the stationary Navier-Stokes equations under smallness assumptions on the data or the stability of certain time discretization schemes, actually only use a small range of properties and are therefore valid in a more general context. This observation leads us to introduce the concept of SST spaces, a generalization of the functional setting for the Navier-Stokes equations. It allows us to prove (by means of counterexamples) that several uniqueness and stability conjectures that are still open in the case of the Navier-Stokes equations have a negative answer in the larger class of SST spaces, thereby showing that proof strategies used for a number of classical results are not sufficient to affirmatively answer these open questions. More precisely, in the larger class of SST spaces, non-uniqueness phenomena can be observed for the implicit Euler scheme, for two nonlinear versions of the Crank-Nicolson scheme, for the fractional step theta scheme, and for the SST-generalized stationary Navier-Stokes equations. As far as stability is concerned, a linear version of the Euler scheme, a nonlinear version of the Crank-Nicolson scheme, and the fractional step theta scheme turn out to be non-stable in the class of SST spaces. The positive results established in this thesis include the generalization of classical uniqueness and stability results to SST spaces, the uniqueness of solutions (under smallness assumptions) to two nonlinear versions of the Euler scheme, two nonlinear versions of the Crank-Nicolson scheme, and the fractional step theta scheme for general SST spaces, the second order convergence of a version of the Crank-Nicolson scheme, and a new proof of the first order convergence of the implicit Euler scheme for the Navier-Stokes equations. For each convergence result, we provide conditions on the data that guarantee the existence of nonstationary solutions satisfying the regularity assumptions needed for the corresponding convergence theorem. In the case of the Crank-Nicolson scheme, this involves a compatibility condition at the corner of the space-time cylinder, which can be satisfied via a suitable prescription of the initial acceleration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dieser Werkstattbericht ist die zweite, verbesserte und um weitere Aufgaben ergänzte Version der Veröffentlichung von 2014. Hier wollen wir den aktuellen Arbeitsstand des Teilprojekts "Mathematik für Maschinenbauer" der AG Ing-Math vorstellen. Es werden eine Reihe von Anwendungsaufgaben und das zugrunde liegende Konzept vorgestellt. Die Aufgaben sind für die Veranstaltungen Mathematik 1 und 2 für Maschinenbauer konzipiert, jedoch lässt sich das Konzept auch auf andere ingenieurwissenschaftliche Studiengänge übertragen. Das Ziel ist es mit diesen Aufgaben die Motivation zu fördern und den Studierenden die Relevanz der Mathematik bereits in den ersten Semestern zu verdeutlichen.