879 resultados para Heart-rate
Resumo:
Objective To evaluate the cardiorespiratory and behavioural effects of epidural xylazine (XYL) or clonidine (CLO) in horses.Study design Blinded, randomized experimental study.Twelve healthy Arabian yearling horses weighing 117-204 kg were randomly allocated into two groups: XYL (n = 6) and CLO (n = 6).Methods An epidural catheter was inserted and a facial arterial catheter was placed and the next day the horses were restrained in stocks. Baseline values for heart (HR) and respiratory (RR) rates, arterial pressure and behavioural responses were evaluated before (TO) and 10, 20, 30, 45, 60, 90 and 120 minutes after epidural injection (T10-T120). The horses received 0.2 mg kg(-1) of XYL or 5 mu g kg(-1) CLO; adjusted to (3.4 + (body weight in kg x 0.013) mL with saline. Data were analysed by the Kolmogorov-Smirnov test, one-way ANOVA with repeated measures, and one-way ANOVA followed by a Student-Newman-Keuls test or Fisher's exact test, as necessary. Significance was set at p <= 0.05.Results Sedation and ataxia were seen at T10, persisting until T120 in four and three horses, respectively, in XYL and all horses in CLO respectively. Two XYL and one CLO horses became recumbent at T45 and T25 respectively. Penile prolapse occurred in four of five males at T30 and T45, in the XYL and CLO groups, respectively, resolving by T120. Tail relaxation was present from T10 to T120 in all horses in XYL and in four horses in CLO. Head drop was observed from T20 to T60 and from T10 to T120 in XYL and CLO respectively. Respiratory rate decreased significantly only at T45 in the CLO group. Heart rate and arterial blood pressure remained stable.Conclusions and clinical relevance Epidural CLO and XYL produce similar cardiorespiratory and behavioural changes but neither would be safe to use clinically at the doses used in this study.
Resumo:
Pharmacopuncture, the injection of subclinical doses of drugs into acupoints reduces drug undesirable side effects, residues in animal consumption products and treatment costs in large animals. Acepromazine (Acp) produces several undesirable effects, such as hypotension. Previous studies with the injection of 1/10 of Acp dose in dog acupoints showed its advantage for sedation, minimizing undesirable effects. Eight horses were randomly submitted to four different treatment protocols according to a Latin Square double-blind design: (i) 0.1 ml kg(1) of saline subcutaneously injected at the cervical region, (ii) 0.1 mg kg(1) of Acp injected subcutaneously at the cervical region, (iii) 0.01 ml kg(1) of saline injected into GV1 acupoint (aquapuncture) and (iv) 0.01 mg kg(1) of Acp injected into GV1 acupoint (pharmacopuncture). Heart rate, respiratory rate, head height and degree of sedation were measured before and at 30, 60 and 90 min after treatments. Signs of sedation were observed in all treated groups at 30 min and only in 1/10Acp-GV1 at 60 min after the treatments. Only the group treated with 0.1 mg kg(1) of Acp s.c. had significantly lower values of head height at 30 min. Respiratory rate tended to reduce in all groups but was significantly lower only in horses treated with 0.1 mg kg(1) of Acp s.c. Heart rate remained unchanged in all groups. Acp-pharmacopuncture on GV1 in horses produced a mild sedation when compared with the conventional dose of Acp. More investigations are necessary to determine the optimal dosage of Acp-pharmacopuncture for sedation in horses.
Resumo:
The effects of carotid occlusion on parasympathetic activity were studied in anesthetized dogs submitted to beta adrenergic blockade. Modifications of the heart rate, before and after administration of atropine, were utilized for assessment of vagal changes. When vagal activity was intact there was elevation of the heart rate. After parasympathetic blockade carotid occlusion did not cause heart rate modifications. The data suggest that carotid occlusion produced vagal inhibition.
Resumo:
Inotropic effects of Propafenon were studied in isovolumic isolated guinea pig hearts submitted to infusion of the drug during 10 minutes. The dosages utilized caused: bradycardia, depression of AV nodal conduction and QRS widening. Simultaneously there was: decrease of the developed pressure (DP) and of the rate of rise of pressure (dp/dt), and elongation of the time of peak pressure. Since there was no clear relation between the heart rate and the inotropic indices (PD and dp/dt), it could be supposed that the depressor effect was not due to impairment of the chronotropism only. After the infusion of Propafenon, the chronotropic effect disapeared after 15 min, while the inotropic state presented a less satisfatory recuperation. The coronary output accompanied the myocardial metabolic needs, that is to say, there was a fall during the period of depressed cardiac function and a later tendency to increase during recovery.
Resumo:
1. 1. The mechanisms behind cardiac control were investigated in the South American lungfish, Lepidosiren paradoxa, using fish with chronically implanted cannulae and electromagnetic flow probes. In addition, a preliminary study was made of the cardiovascular events associated with air breathing. 2. 2. The study suggests that the heart of Lepidosiren is controlled by cholinergic vagal fibres which, in some animals, exert a tonic influence in the resting fish. Cyclic changes in heart rate in association with air breaths is due to modulation of this cholinergic tonus. 3. 3. In addition to the variable cholinergic tonus, there appears to be a relatively stable adrenergic tonus on the heart, which causes an elevated heart rate. The adrenergic tonus is likely to be due to local release of catecholamines from endogenous chromaffin cells within the atrium. 4. 4. Preliminary results suggest that pulmonary arterial flow increases by about 50% immediately following an air breath. The mechanism behind this increase probably involves both an elevation of the heart rate and a redistribution of blood flow into the pulmonary circuit. © 1989.
Resumo:
Anaerobic threshold (AT) is usually estimated as a change point problem by visual analysis of the cardiorespiratory response to incremental dynamic exercise. In this study, two phase linear (TPL) models of the linear-linear and linear-quadratic type were used for the estimation of AT. The correlation coefficient between the classical and statistical approaches was 0.88, and 0.89 after outlier exclusion. The TPL models provide a simple method for estimating AT that can be easily implemented using a digital computer for the automatic pattern recognition of AT.
Resumo:
The present study investigates the participation and interaction between cholinergic and opiate receptors of the medial septal area (MSA) in the regulation of Na+, K+ and water excretion, drinking and blood pressure regulation. Male Holtzman rats were implanted with stainless steel cannulae opening into the MSA. Na+, K+ and water excretion, water intake and blood pressure were measured after injection of carbachol (cholinergic agonist), FK-33824 (an opiate agonist) + carbachol or naloxone (an opiate antagonist) + carbachol into MSA. Carbachol (0.5 or 2.0 nmol) induced an increase in Na+ and K+ excretion, water intake and blood pressure and reduced the urinary volume. FK-33824 reduced the urinary volume and Na+ and K+ excretion. Previous injection of FK-33824 (100 ng) into the MSA blocked the increases in Na+ and K+ excretion, water intake and blood pressure induced by carbachol. Naloxone (10 μg) produced no changes in the effect of 2.0 nmol carbachol, but potentiated the natriuretic effect induced by 0.5 nmol dose of carbachol. These data show an inhibitory effect of opiate receptors on the changes in cardiovascular, fluid and electrolyte balance induced by cholinergic stimulation of the MSA in rats. © 1992.
Resumo:
PURPOSE--To analyze the influence of transient and sustained elevations of arterial pressure (AP) on the rate of rise of the left ventricular pressure (dp/dt). METHODS--Thirteen anesthetized, thoracotomized and mechanically ventilated dogs, submitted to pharmacological autonomic block (oxprenolol-3 mg/kg plus atropine-0.5 mg/kg). The AP elevation was obtained by mechanical constriction of the descending thoracic aorta. Two protocols were applied to all animals: Transient Arterial Hypertension (TAH) and Sustained Arterial Hypertension (SAH) and the following variables were evaluated: heart rate (HR), systolic (LVSP) and end diastolic (LVEDP) left ventricular pressure and dp/dt. In TAH the variables were analyzed in the basal condition (To) and at the maximal value of AP attained during the transient pressure elevation (TM). In the protocol SAH the variables were evaluated in the conditions: Control (Ho), hypertension 1 (H1) and hypertension 2 (H2). RESULTS--Considering all conditions, there were no significant differences among the values of HR. In the protocol TAH, the LVSP varied from 133 +/- 22 mmHg to 180 +/- 27 mmHg, whereas in SAH the values of LVSP were as follow: HO = 129 +/- 25 mmHg; H1 = 152 = 23 mmHg; H2 = 182 +/- 24 mmHg. LVEDP changed in both protocols: To = 7 +/- 2 mmHg; TM = 13 +/- 2 mmHg (p < 0.05); Ho = 7 +/- 2 mmHg; H1 = 10 +/- 2 mmHg; H2 = 14 +/- 3 mmHg (p < 0.05). During TAH there was no difference between the values of dp/dt (To = 3.303 +/- 598 mmHg/s; TM = 3.350 +/- 653 mmHg/s; p > 0.05), however, there were increases of the dp/dt during SAH (Ho = 3.233 +/- 576 mmHg/s; H1 = 3.831 +/- 667 mmHg/s; H1 = 4.594 +/- 833 mmHg/2; p < 0.05). CONCLUSION--The values of dp/dt are not influenced by transient elevation of AP. Sustained increase of AP activates cardiac adjustments, which results in elevation of dp/dt, by stimulation of contractile state. Probably, the inotropic intervention mechanism is the length dependent activation due to the Frank-Starling mechanism.
Resumo:
In this study we investigated the effect of the anteroventral third ventricle (AV3V) lesion on the pressor, bradycardic, natriuretic, kaliuretic, and dipsogenic responses induced by the injection of the cholinergic agonist carbachol into the lateral preoptic area (LPOA) in rats. Male Holtzman rats with sham or electrolytic AV3V lesion were implanted with stainless steel cannula directly into the LPOA. Injection of carbachol (7.5 nmol) into the LPOA of sham rats induced natriuresis (405 ± 66 μEq/120 min), kaliuresis (234 ± 44 μEq/120 min), water intake (9.5 ± 1.7 ml/60 min), bradycardia (-47 ± 11 bpm), and increase in mean arterial pressure (28 ± 3 mmHg). Acute AV3V lesion (1-5 days) reduced the natriuresis (12 ± 4 μEq/120 min), kaliuresis (128 ± 27 μEq/120 min), water intake (1.7 ± 0.9 ml/60 min), and pressor responses (14 ± 4 mmHg) produced by carbachol into the LPOA. Tachycardia instead of bradycardia was also observed. Chronic (14-18 days) AV3V lesion reduced only the pressor response (10 ± 2 mmHg) induced by carbachol. These results showed that acute, but not chronic, AV3V lesion reduced the natriuretic, kaliuretic, and dipsogenic responses to carbachol injection into the LPOA. The pressor response was reduced in acute or chronic AV3V-lesioned rats. The results suggest that the lateral areas may control the fluid and electrolyte balance independently from the AV3V region in chronic AV3V-lesioned rats. © 1992.