989 resultados para Heart -- Hypertrophy
Resumo:
Children with congenital heart disease (CHD) who survive surgery often present impaired neurodevelopment and qualitative brain anomalies. However, the impact of CHD on total or regional brain volumes only received little attention. We address this question in a sample of patients with 22q11.2 deletion syndrome (22q11DS), a neurogenetic condition frequently associated with CHD. Sixty-one children, adolescents, and young adults with confirmed 22q11.2 deletion were included, as well as 80 healthy participants matched for age and gender. Subsequent subdivision of the patients group according to CHD yielded a subgroup of 27 patients with normal cardiac status and a subgroup of 26 patients who underwent cardiac surgery during their first years of life (eight patients with unclear status were excluded). Regional cortical volumes were extracted using an automated method and the association between regional cortical volumes, and CHD was examined within a three-condition fixed factor. Robust protection against type I error used Bonferroni correction. Smaller total cerebral volumes were observed in patients with CHD compared to both patients without CHD and controls. The pattern of bilateral regional reductions associated with CHD encompassed the superior parietal region, the precuneus, the fusiform gyrus, and the anterior cingulate cortex. Within patients, a significant reduction in the left parahippocampal, the right middle temporal, and the left superior frontal gyri was associated with CHD. The present results of global and regional volumetric reductions suggest a role for disturbed hemodynamic in the pathophysiology of brain alterations in patients with neurodevelopmental disease and cardiac malformations.
Resumo:
Cardiac morphogenesis and function are known to depend on both aerobic and anaerobic energy-producing pathways. However, the relative contribution of mitochondrial oxidation and glycogenolysis, as well as the determining factors of oxygen demand in the distinct chambers of the embryonic heart, remains to be investigated. Spontaneously beating hearts isolated from stage 11, 20, and 24HH chick embryos were maintained in vitro under controlled metabolic conditions. O(2) uptake and glycogenolytic rate were determined in atrium, ventricle, and conotruncus in the absence or presence of glucose. Oxidative capacity ranged from 0.2 to 0.5 nmol O(2)/(h.microg protein), did not depend on exogenous glucose, and was the highest in atria at stage 20HH. However, the highest reserves of oxidative capacity, assessed by mitochondrial uncoupling, were found at the youngest stage and in conotruncus, representing 75 to 130% of the control values. At stage 24HH, glycogenolysis in glucose-free medium was 0.22, 0.17, and 0.04 nmol glucose U(h.microg protein) in atrium, ventricle, and conotruncus, respectively. Mechanical loading of the ventricle increased its oxidative capacity by 62% without altering glycogenolysis or lactate production. Blockade of glycolysis by iodoacetate suppressed lactate production but modified neither O(2) nor glycogen consumption in substrate-free medium. These findings indicate that atrium is the cardiac chamber that best utilizes its oxidative and glycogenolytic capacities and that ventricular wall stretch represents an early and major determinant of the O(2) uptake. Moreover, the fact that O(2) and glycogen consumptions were not affected by inhibition of glyceraldehyde-3-phosphate dehydrogenase provides indirect evidence for an active glycerol-phosphate shuttle in the embryonic cardiomyocytes.
Resumo:
Objectives: Existing VADs are single-ventricle pumps needing anticoagulation. We developed a bi-ventricular external assist device that partially reproduces the physiological muscle function of the heart. This artificial muscle could wrap the heart and improve its contractile force.Methods: The device has a carbon fiber skeleton fitting a 30-40kg patient's heart, to which a Nitinol based artificial muscle is connected. The artificial muscle wraps both ventricles. The Nitinol fibers are woven on a Kevlar mesh surrounding each ventricle. The fibers are electrically driven with a dedicated control unit developed for this purpose. We assessed hemodynamic performances of this device using a previously described dedicated bench test. Volume ejected and pressure gradient have been measured with afterload ranging from 10 to 50mmHg.Results: With an afterload of 50mmHg the system has an ejection fraction of 4% on the right side and 5% on the left side. The system is able to generate a systolic ejection of 2.2mL on the right side and 3.25mL on the left side. With an afterload of 25mmHg the results are reduced of about 20%. The activation frequency can reach 80/minute resulting in a total volume displacement of 176mL/minute on the right side and 260mL/minute on the left side.Conclusions: These preliminary studies confirmed the possibility of improving the ejection fraction of a failing heart using artificial muscle for external cardiac compression avoiding anticoagulation therapy. This device could be helpful in weaning cardio-pulmonary bypass and/or for short-term cardio-circulatory support in pediatric population with cardiac failure.
Resumo:
Although both inflammatory and atherosclerosis markers have been associated with coronary heart disease (CHD) risk, data directly comparing their predictive value are limited. The authors compared the value of 2 atherosclerosis markers (ankle-arm index (AAI) and aortic pulse wave velocity (aPWV)) and 3 inflammatory markers (C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha)) in predicting CHD events. Among 2,191 adults aged 70-79 years at baseline (1997-1998) from the Health, Aging, and Body Composition Study cohort, the authors examined adjudicated incident myocardial infarction or CHD death ("hard" events) and "hard" events plus hospitalization for angina or coronary revascularization (total CHD events). During 8 years of follow-up between 1997-1998 and June 2007, 351 participants developed total CHD events (197 "hard" events). IL-6 (highest quartile vs. lowest: hazard ratio = 1.82, 95% confidence interval: 1.33, 2.49; P-trend < 0.001) and AAI (AAI </= 0.9 vs. AAI 1.01-1.30: hazard ratio = 1.57, 95% confidence interval: 1.14, 2.18) predicted CHD events above traditional risk factors and modestly improved global measures of predictive accuracy. CRP, TNF-alpha, and aPWV had weaker associations. IL-6 and AAI accurately reclassified 6.6% and 3.3% of participants, respectively (P's </= 0.05). Results were similar for "hard" CHD, with higher reclassification rates for AAI. IL-6 and AAI are associated with future CHD events beyond traditional risk factors and modestly improve risk prediction in older adults.
Resumo:
So far, cardiac arrest is still associated with high mortality or severe neurological disability in survivors. At the tissue level, cardiac arrest results into an acute condition of generalized hypoxia. A better understanding of the pathophysiology of ischemia-reperfusion and of the inflammatory response that develops after cardiac arrest could help to design novel therapeutic strategies in the future. It seems unlikely that a single drug, acting as a <magic bullet>, might be able to improve survival or neurological prognosis. Lessons learned from pathophysiological mechanisms rather indicate that combined therapies, involving thrombolysis, neuroprotective agents, antioxidants and anti-inflammatory molecules, together with temperature cooling, might represent helpful strategies to improve patient's outcome after cardiac arrest.
Resumo:
GLUT8 is a glucose transporter isoform expressed at high levels in testis; at intermediate levels in the brain, including the hippocampus; and at lower levels in the heart and several other tissues. GLUT8 is located in an intracellular compartment and does not appear to translocate to the cell surface, except in blastocysts, where insulin has been reported to induce its surface expression. Here, we generated mice with inactivation of the glut8 gene. We showed that expression of GLUT8 was not required for normal embryonic development and that glut8-/- mice had normal postnatal development, glucose homeostasis, and response to mild stress. Adult glut8-/- mice showed increased proliferation of hippocampal cells but no defect in memory acquisition and retention. Absence of GLUT8 from the heart did not alter heart size and morphology but led to an increase in P-wave duration, which was not associated with abnormal Nav1.5 Na+ channel or connexin expression. Thus, absence of GLUT8 expression in the mouse caused complex but mild physiological alterations.
Resumo:
AIMS: The aim of this study was to investigate the heritability as well as genetic and environmental correlations of left ventricular (LV) structural and functional traits in complex pedigrees of a Caucasian population. METHODS AND RESULTS: We randomly recruited 459 white European subjects from 52 families (50% women; mean age 45 years). LV structure was measured by M-mode and 2D echocardiography and LV function was measured by conventional Doppler and tissue Doppler imaging (TDI). Other measurements included blood pressure, anthropometric, and biochemical measurements. We estimated the heritability of LV traits while adjusting for covariables, including sex, age, body height and weight, systolic and diastolic blood pressures, and heart rate. With full adjustment, heritability of LV mass was 0.23 (P= 0.025). The TDI-derived mitral annular velocities Ea and Aa showed moderate heritability (h(2)= 0.36 and 0.53, respectively), whereas the mitral inflow A peak had weak heritability (h(2) = 0.25) and the E peak was not heritable (h(2) = 0.11). We partitioned the total phenotypic correlation when it reached significance, into a genetic and an environmental component. The genetic correlations were 0.61 between the E and Ea peaks and 0.90 between the A and Aa peaks. CONCLUSION: Our study demonstrated moderate heritability for LV mass as well as the mitral annular Ea and Aa peaks. We also found significant genetic correlations between the E and Ea peaks and between the A and Aa peaks. Our current findings support the ongoing research to map and detect genetic variants that contribute to the variation in LV mass and other LV structural and functional phenotypes.
Resumo:
Audit report on the Heart of Iowa Regional Transit Agency, Des Moines, for the year ended June 30, 2007
Resumo:
OBJECTIVES: The purpose of this study was to evaluate the association between inflammation and heart failure (HF) risk in older adults. BACKGROUND: Inflammation is associated with HF risk factors and also directly affects myocardial function. METHODS: The association of baseline serum concentrations of interleukin (IL)-6, tumor necrosis factor-alpha, and C-reactive protein (CRP) with incident HF was assessed with Cox models among 2,610 older persons without prevalent HF enrolled in the Health ABC (Health, Aging, and Body Composition) study (age 73.6 +/- 2.9 years; 48.3% men; 59.6% white). RESULTS: During follow-up (median 9.4 years), HF developed in 311 (11.9%) participants. In models controlling for clinical characteristics, ankle-arm index, and incident coronary heart disease, doubling of IL-6, tumor necrosis factor-alpha, and CRP concentrations was associated with 29% (95% confidence interval: 13% to 47%; p < 0.001), 46% (95% confidence interval: 17% to 84%; p = 0.001), and 9% (95% confidence interval: -1% to 24%; p = 0.087) increase in HF risk, respectively. In models including all 3 markers, IL-6, and tumor necrosis factor-alpha, but not CRP, remained significant. These associations were similar across sex and race and persisted in models accounting for death as a competing event. Post-HF ejection fraction was available in 239 (76.8%) cases; inflammatory markers had stronger association with HF with preserved ejection fraction. Repeat IL-6 and CRP determinations at 1-year follow-up did not provide incremental information. Addition of IL-6 to the clinical Health ABC HF model improved model discrimination (C index from 0.717 to 0.734; p = 0.001) and fit (decreased Bayes information criterion by 17.8; p < 0.001). CONCLUSIONS: Inflammatory markers are associated with HF risk among older adults and may improve HF risk stratification.
Resumo:
Background: Chronic obstructive pulmonary disease (COPD) has been associated with increased risk for heart failure (HF). The impact of subclinical abnormal spirometric findings on HF risk among older adults without history of COPD is not well elucidated. Methods: We evaluated 2125 participants (age 73.6±2.9 years; 50.5% men; 62.3% white; 45.6/9.4% past/current smokers; body mass index [BMI] 27.2±4.6 kg/m2) without prevalent COPD or HF who underwent baseline spirometry in the Health ABC Study. Abnormal lung function was defined either as forced vital capacity (FVC) below lower limit of normal (LLN) or forced expiratory volume in 1st sec (FEV1) to FVC ratio below LLN. Results: On follow-up (median, 9.4 years), 68 of 350 (19.4%) participants with abnormal lung function developed HF, as compared to 172 of 1775 (9.7%) participants with normal lung function (hazard ratio [HR], 2.31; 95% confidence interval [CI], 1.74 -3.06; P<.001). This increased risk persisted after adjusting for all other independent predictors of HF in the Health ABC Study, BMI, incident coronary events, and several inflammatory markers (HR, 1.82; 95% CI, 1.30 -2.54; P<.001), and remained constant over time. Baseline FVC and FEV1 had a linear association with HF risk (Figure). In adjusted models, HF risk increased by 21% (95% CI, 10 -36%) per 10% decrease in FVC and 18% (95% CI, 10 -28%) per 10% decrease in FEV1 (both P<.001); this association persisted among participants with normal lung function at baseline. Findings were consistent across sex, race, and smoking status. Conclusions: Subclinical abnormal spirometric findings are prevalent among older adults and are independently associated with risk for incident HF.
Resumo:
Introduction: Low cardiac output syndrome is frequent in childrenafter heart surgery for congenital heart disease and may result in pooroutcome and increased morbidity. In the adult population, preoperativebrain natriuretic peptide (BNP) was shown to be predictive of postoperative complications. In children, the value of preoperative BNP onpostoperative outcome is not so clear. The aim of this study was todetermine the predictive value of preoperative BNP on postoperativeoutcome and low cardiac output syndrome in children after heartsurgery for congenital heart disease.Methods: We examined, retrospectively, the postoperative course of97 pediatric patients (mean age 3.7 years, range 0-14 years old) whounderwent heart surgery in a tertiary care pediatric intensive caresetting. NTproBNP was measured preoperatively in all patients(median 412 pg/ml, range 12-35'000 pg/ml). Patients were divided intothree groups according to their NTproBNP levels (group 1: 0-300 pg/ml, group 2: 300-600 pg/ml, group 3: >600 pg/ml) and then,correlations with postoperative outcomes were examined.Results: We found that patients with a high preoperative BNP requiredmore frequently prolonged (>2 days) mechanical ventilation (33%vs 40% vs 61%, p = 0.045) and stayed more frequently longer than6 days in the intensive care unit (42% vs 50% vs 71%, p = 0.03).However, high preoperative BNP was not correlated with occurrenceof low cardiac output syndrome.Conclusion: Preoperative BNP cannot be used, in children, as areliable and sole predictor of postoperative low cardiac outputsyndrome. However it may help identify, before surgery, those patientsat risk of having a difficult postoperative course.