993 resultados para Hazard Models
Resumo:
Background: Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation due to dysregulation of the mucosal immune system. The cytokines IL-1β and IL-18 appear early in intestinal inflammation and their pro-forms are processed via the caspase-1-activating multiprotein complex, the Nlrp3 inflammasome. Previously, we reported that the uptake of dextran sodium sulfate (DSS) by macrophages activates the Nlrp3 inflammasome and that Nlrp3(-/-) mice are protected in the acute DSS colitis model. Of note, other groups have reported opposing effects in regards to DSS susceptibility in Nlrp3(-/-) mice. Recently, mice lacking inflammasomes were found to develop a distinct intestinal microflora. Methods: To reconcile the contradicting observations, we investigated the role of Nlrp3 deficiency in two different IBD models: acute DSS colitis and TNBS (2,4,6-trinitrobenzene sulfonic acid)-induced colitis. In addition, we investigated the impact of the intestinal flora on disease severity by performing cohousing experiments of wild-type and Nlrp3(-/-) mice, as well as by antibiotic treatment. Results: Nlrp3(-/-) mice treated with either DSS or TNBS exhibited attenuated colitis and lower mortality. This protective effect correlated with an increased frequency of CD103+ lamina propria dendritic cells expressing a tolerogenic phenotype in Nlrp3(-/-) mice in steady state conditions. Interestingly, after cohousing, Nlrp3(-/-) mice were as susceptible as wild-type mice, indicating that transmission of endogenous bacterial flora between the two mouse strains might increase susceptibility of Nlrp3(-/-) mice towards DSS-induced colitis. Accordingly, treatment with antibiotics almost completely prevented colitis in the DSS model. Conclusions: The composition of the intestinal microflora significantly influences disease severity in IBD models comparing wild-type and Nlrp3(-/-) mice. This observation may - at least in part - explain contradictory results concerning the role of the inflammasome in different labs. Further studies are required to define the role of the Nlrp3 inflammasome in noninflamed mucosa under steady state conditions and in IBD.
Resumo:
This paper analyses the likelihood of leaving and joining employment in an urban area. Estimates show that individual, firm, regulatory and macroeconomic factors a ffect urban (un)employment duration in di fferent degrees. Also, national and urban (un)employment seem to share a common baseline hazard and similar macroeconomic and regulatory drivers. Individual characteristics are the only source of di fference we can identify between national and urban (un)employment duration. Keywords: Duration Models, Urban (Un)employment. JEL Classi fication: J64, R23.
Resumo:
Many patients develop tumor antigen-specific T cell responses detectable in peripheral blood mononuclear cells (PBMCs) following cancer vaccine. However, measurable tumor regression is observed in a limited number of patients receiving cancer vaccines. There is a need to re-evaluate systemically the immune responses induced by cancer vaccines. Here, we established animal models targeting two human cancer/testis antigens, NY-ESO-1 and MAGE-A4. Cytotoxic T lymphocyte (CTL) epitopes of these antigens were investigated by immunizing BALB/c mice with plasmids encoding the entire sequences of NY-ESO-1 or MAGE-A4. CD8(+) T cells specific for NY-ESO-1 or MAGE-A4 were able to be detected by ELISPOT assays using antigen presenting cells pulsed with overlapping peptides covering the whole protein, indicating the high immunogenicity of these antigens in mice. Truncation of these peptides revealed that NY-ESO-1-specific CD8(+) T cells recognized D(d)-restricted 8mer peptides, NY-ESO-181-88. MAGE-A4-specific CD8(+) T cells recognized D(d)-restricted 9mer peptides, MAGE-A4265-273. MHC/peptide tetramers allowed us to analyze the kinetics and distribution of the antigen-specific immune responses, and we found that stronger antigen-specific CD8(+) T cell responses were required for more effective anti-tumor activity. Taken together, these animal models are valuable for evaluation of immune responses and optimization of the efficacy of cancer vaccines.
Resumo:
Estudi realitzat a partir d’una estada a la Stanford University School of Medicine. Division of Radiation Oncology, Estats Units, entre 2010 i 2012. Durant els dos anys de beca postdoctoral he estat treballant en dos projectes diferents. En primer lloc, i com a continuació d'estudis previs del grup, volíem estudiar la causa de les diferències en nivells d'hipòxia que havíem observat en models de càncer de pulmó. La nostra hipòtesi es basava en el fet que aquestes diferències es devien a la funcionalitat de la vasculatura. Vam utilitzar dos models preclínics: un en què els tumors es formaven espontàniament als pulmons i l'altre on nosaltres injectàvem les cèl•lules de manera subcutània. Vam utilitzar tècniques com la ressonància magnètica dinàmica amb agent de contrast (DCE-MRI) i l'assaig de perfusió amb el Hoeschst 33342 i ambdues van demostrar que la funcionalitat de la vasculatura dels tumors espontanis era molt més elevada comparada amb la dels tumors subcutanis. D'aquest estudi, en podem concloure que les diferències en els nivells d'hipòxia en els diferents models tumorals de càncer de pulmó podrien ser deguts a la variació en la formació i funcionalitat de la vasculatura. Per tant, la selecció de models preclínics és essencial, tant pels estudi d'hipòxia i angiogènesi, com per a teràpies adreçades a aquests fenòmens. L'altre projecte que he estat desenvolupant es basa en l'estudi de la radioteràpia i els seus possibles efectes a l’hora de potenciar l'autoregeneració del tumor a partir de les cèl•lules tumorals circulants (CTC). Aquest efecte s'ha descrit en alguns models tumorals preclínics. Per tal de dur a terme els nostres estudis, vam utilitzar una línia tumoral de càncer de mama de ratolí, marcada permanentment amb el gen de Photinus pyralis o sense marcar i vam fer estudis in vitro i in vivo. Ambdós estudis han demostrat que la radiació tumoral promou la invasió cel•lular i l'autoregeneració del tumor per CTC. Aquest descobriment s'ha de considerar dins d'un context de radioteràpia clínica per tal d'aconseguir el millor tractament en pacients amb nivells de CTC elevats.
Resumo:
BACKGROUND: Differences in morbidity and mortality between socioeconomic groups constitute one of the most consistent findings of epidemiologic research. However, research on social inequalities in health has yet to provide a comprehensive understanding of the mechanisms underlying this association. In recent analysis, we showed health behaviours, assessed longitudinally over the follow-up, to explain a major proportion of the association of socioeconomic status (SES) with mortality in the British Whitehall II study. However, whether health behaviours are equally important mediators of the SES-mortality association in different cultural settings remains unknown. In the present paper, we examine this issue in Whitehall II and another prospective European cohort, the French GAZEL study. METHODS AND FINDINGS: We included 9,771 participants from the Whitehall II study and 17,760 from the GAZEL study. Over the follow-up (mean 19.5 y in Whitehall II and 16.5 y in GAZEL), health behaviours (smoking, alcohol consumption, diet, and physical activity), were assessed longitudinally. Occupation (in the main analysis), education, and income (supplementary analysis) were the markers of SES. The socioeconomic gradient in smoking was greater (p<0.001) in Whitehall II (odds ratio [OR] = 3.68, 95% confidence interval [CI] 3.11-4.36) than in GAZEL (OR = 1.33, 95% CI 1.18-1.49); this was also true for unhealthy diet (OR = 7.42, 95% CI 5.19-10.60 in Whitehall II and OR = 1.31, 95% CI 1.15-1.49 in GAZEL, p<0.001). Socioeconomic differences in mortality were similar in the two cohorts, a hazard ratio of 1.62 (95% CI 1.28-2.05) in Whitehall II and 1.94 in GAZEL (95% CI 1.58-2.39) for lowest versus highest occupational position. Health behaviours attenuated the association of SES with mortality by 75% (95% CI 44%-149%) in Whitehall II but only by 19% (95% CI 13%-29%) in GAZEL. Analysis using education and income yielded similar results. CONCLUSIONS: Health behaviours were strong predictors of mortality in both cohorts but their association with SES was remarkably different. Thus, health behaviours are likely to be major contributors of socioeconomic differences in health only in contexts with a marked social characterisation of health behaviours. Please see later in the article for the Editors' Summary.
Resumo:
An active strain formulation for orthotropic constitutive laws arising in cardiac mechanics modeling is introduced and studied. The passive mechanical properties of the tissue are described by the Holzapfel-Ogden relation. In the active strain formulation, the Euler-Lagrange equations for minimizing the total energy are written in terms of active and passive deformation factors, where the active part is assumed to depend, at the cell level, on the electrodynamics and on the specific orientation of the cardiac cells. The well-posedness of the linear system derived from a generic Newton iteration of the original problem is analyzed and different mechanical activation functions are considered. In addition, the active strain formulation is compared with the classical active stress formulation from both numerical and modeling perspectives. Taylor-Hood and MINI finite elements are employed to discretize the mechanical problem. The results of several numerical experiments show that the proposed formulation is mathematically consistent and is able to represent the main key features of the phenomenon, while allowing savings in computational costs.
Resumo:
The use of cannabis sativa preparations as recreational drugs can be traced back to the earliest civilizations. However, animal models of cannabinoid addiction allowing the exploration of neural correlates of cannabinoid abuse have been developed only recently. We review these models and the role of the CB1 cannabinoid receptor, the main target of natural cannabinoids, and its interaction with opioid and dopamine transmission in reward circuits. Extensive reviews on the molecular basis of cannabinoid action are available elsewhere (Piomelli et al., 2000;Schlicker and Kathmann, 2001).
Resumo:
The recent wave of upheavals and revolts in Northern Africa and the Middle East goes back to an old question often raised by theories of collective action: does repression act as a negative or positive incentive for further mobilization? Through a review of the vast literature devoted to this question, this article aims to go beyond theoretical and methodological dead-ends. The article moves on to non-Western settings in order to better understand, via a macro-sociological and dynamic approach, the causal effects between mobilizations and repression. It pleads for a meso- and micro-level approach to this issue: an approach that puts analytical emphasis both on protest organizations and on individual activists' careers.
Resumo:
Background Following the discovery that mutant KRAS is associated with resistance to anti-epidermal growth factor receptor (EGFR) antibodies, the tumours of patients with metastatic colorectal cancer are now profiled for seven KRAS mutations before receiving cetuximab or panitumumab. However, most patients with KRAS wild-type tumours still do not respond. We studied the effect of other downstream mutations on the efficacy of cetuximab in, to our knowledge, the largest cohort to date of patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab plus chemotherapy in the pre-KRAS selection era. Methods 1022 tumour DNA samples (73 from fresh-frozen and 949 from formalin-fixed, paraffin-embedded tissue) from patients treated with cetuximab between 2001 and 2008 were gathered from 11 centres in seven European countries. 773 primary tumour samples had sufficient quality DNA and were included in mutation frequency analyses; mass spectrometry genotyping of tumour samples for KRAS, BRAF, NRAS, and PIK3CA was done centrally. We analysed objective response, progression-free survival (PFS), and overall survival in molecularly defined subgroups of the 649 chemotherapy-refractory patients treated with cetuximab plus chemotherapy. Findings 40.0% (299/747) of the tumours harboured a KRAS mutation, 14.5% (108/743) harboured a PIK3CA mutation (of which 68.5% [74/108] were located in exon 9 and 20.4% [22/108] in exon 20), 4.7% (36/761) harboured a BRAF mutation, and 2.6% (17/644) harboured an NRAS mutation. KRAS mutants did not derive benefit compared with wild types, with a response rate of 6.7% (17/253) versus 35.8% (126/352; odds ratio [OR] 0.13, 95% CI 0.07-0.22; p<0.0001), a median PFS of 12. weeks versus 24 weeks (hazard ratio [HR] 1 98, 1.66-2.36; p<0.0001), and a median overall survival of 32 weeks versus 50 weeks (1.75, 1.47-2.09; p<0.0001). In KRAS wild types, carriers of BRAF and NRAS mutations had a significantly lower response rate than did BRAF and NRAS wild types, with a response rate of 8.3% (2/24) in carriers of BRAF mutations versus 38.0% in BRAF wild types (124/326; OR 0.15, 95% CI 0.02-0.51; p=0.0012); and 7.7% (1/13) in carriers of NRAS mutations versus 38.1% in NRAS wild types (110/289; OR 0.14, 0.007-0.70; p=0.013). PIK3CA exon 9 mutations had no effect, whereas exon 20 mutations were associated with a worse outcome compared with wild types, with a response rate of 0.0% (0/9) versus 36.8% (121/329; OR 0.00,0.00-0.89; p=0.029), a median PFS of 11.5 weeks versus 24 weeks (HR 2.52, 1.33-4.78; p=0.013), and a median overall survival of 34 weeks versus 51 weeks (3.29, 1.60-6.74; p=0.0057). Multivariate analysis and conditional inference trees confirmed that, if KRAS is not mutated, assessing BRAF, NRAS, and PIK3CA exon 20 mutations (in that order) gives additional information about outcome. Objective response rates in our series were 24.4% in the unselected population, 36.3% in the KRAS wild-type selected population, and 41.2% in the KRAS, BRAF, NRAS, and PIK3CA exon 20 wild-type population. Interpretation While confirming the negative effect of KRAS mutations on outcome after cetuximab, we show that BRAF, NRAS, and PIK3CA,exon 20 mutations are significantly associated with a low response rate. Objective response rates could be improved by additional genotyping of BRAF, NRAS, and PIK3CA exon 20 mutations in a KRAS wild-type population.
Resumo:
Background: Single nucleotide polymorphisms (SNPs) are the most frequent type of sequence variation between individuals, and represent a promising tool for finding genetic determinants of complex diseases and understanding the differences in drug response. In this regard, it is of particular interest to study the effect of non-synonymous SNPs in the context of biological networks such as cell signalling pathways. UniProt provides curated information about the functional and phenotypic effects of sequence variation, including SNPs, as well as on mutations of protein sequences. However, no strategy has been developed to integrate this information with biological networks, with the ultimate goal of studying the impact of the functional effect of SNPs in the structure and dynamics of biological networks. Results: First, we identified the different challenges posed by the integration of the phenotypic effect of sequence variants and mutations with biological networks. Second, we developed a strategy for the combination of data extracted from public resources, such as UniProt, NCBI dbSNP, Reactome and BioModels. We generated attribute files containing phenotypic and genotypic annotations to the nodes of biological networks, which can be imported into network visualization tools such as Cytoscape. These resources allow the mapping and visualization of mutations and natural variations of human proteins and their phenotypic effect on biological networks (e.g. signalling pathways, protein-protein interaction networks, dynamic models). Finally, an example on the use of the sequence variation data in the dynamics of a network model is presented. Conclusion: In this paper we present a general strategy for the integration of pathway and sequence variation data for visualization, analysis and modelling purposes, including the study of the functional impact of protein sequence variations on the dynamics of signalling pathways. This is of particular interest when the SNP or mutation is known to be associated to disease. We expect that this approach will help in the study of the functional impact of disease-associated SNPs on the behaviour of cell signalling pathways, which ultimately will lead to a better understanding of the mechanisms underlying complex diseases.
Resumo:
Three-dimensional models of organ biogenesis have recently flourished. They promote a balance between stem/progenitor cell expansion and differentiation without the constraints of flat tissue culture vessels, allowing for autonomous self-organization of cells. Such models allow the formation of miniature organs in a dish and are emerging for the pancreas, starting from embryonic progenitors and adult cells. This review focuses on the currently available systems and how these allow new types of questions to be addressed. We discuss the expected advancements including their potential to study human pancreas development and function as well as to develop diabetes models and therapeutic cells.
Resumo:
The development of the field-scale Erosion Productivity Impact Calculator (EPIC) model was initiated in 1981 to support assessments of soil erosion impacts on soil productivity for soil, climate, and cropping conditions representative of a broad spectrum of U.S. agricultural production regions. The first major application of EPIC was a national analysis performed in support of the 1985 Resources Conservation Act (RCA) assessment. The model has continuously evolved since that time and has been applied for a wide range of field, regional, and national studies both in the U.S. and in other countries. The range of EPIC applications has also expanded greatly over that time, including studies of (1) surface runoff and leaching estimates of nitrogen and phosphorus losses from fertilizer and manure applications, (2) leaching and runoff from simulated pesticide applications, (3) soil erosion losses from wind erosion, (4) climate change impacts on crop yield and erosion, and (5) soil carbon sequestration assessments. The EPIC acronym now stands for Erosion Policy Impact Climate, to reflect the greater diversity of problems to which the model is currently applied. The Agricultural Policy EXtender (APEX) model is essentially a multi-field version of EPIC that was developed in the late 1990s to address environmental problems associated with livestock and other agricultural production systems on a whole-farm or small watershed basis. The APEX model also continues to evolve and to be utilized for a wide variety of environmental assessments. The historical development for both models will be presented, as well as example applications on several different scales.
Resumo:
In this work we describe the usage of bilinear statistical models as a means of factoring the shape variability into two components attributed to inter-subject variation and to the intrinsic dynamics of the human heart. We show that it is feasible to reconstruct the shape of the heart at discrete points in the cardiac cycle. Provided we are given a small number of shape instances representing the same heart atdifferent points in the same cycle, we can use the bilinearmodel to establish this. Using a temporal and a spatial alignment step in the preprocessing of the shapes, around half of the reconstruction errors were on the order of the axial image resolution of 2 mm, and over 90% was within 3.5 mm. From this, weconclude that the dynamics were indeed separated from theinter-subject variability in our dataset.
Resumo:
The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by processbased modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws.We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25m resolution.
Resumo:
Climate change data and predictions for the Himalayas are very sparse and uncertain, characterized by a ?Himalayan data gap? and difficulties in predicting changes due to topographic complexity. A few reliable studies and climate change models for Nepal predict considerable changes: shorter monsoon seasons, more intensive rainfall patterns, higher temperatures, and drought. These predictions are confirmed by farmers who claim that temperatures have been increasing for the past decade and wonder why the rains have ?gone mad.? The number of hazard events, notably droughts, floods, and landslides are increasing and now account for approximately 100 deaths in Nepal annually. Other effects are drinking water shortages and shifting agricultural patterns, with many communities struggling to meet basic food security before climatic conditions started changing. The aim of this paper is to examine existing gaps between current climate models and the realities of local development planning through a case study on flood risk and drinking water management for the Municipality of Dharan in Eastern Nepal. This example highlights current challenges facing local-level governments, namely, flood and landslide mitigation, providing basic amenities ? especially an urgent lack of drinking water during the dry season ? poor local planning capacities, and limited resources. In this context, the challenge for Nepal will be to simultaneously address increasing risks caused by hazard events alongside the omnipresent food security and drinking water issues in both urban and rural areas. Local planning is needed that integrates rural development and disaster risk reduction (DRR) with knowledge about climate change considerations. The paper concludes with a critical analysis of climate change modeling and the gap between scientific data and low-tech and low capacities of local planners to access or implement adequate adaptation measures. Recommendations include the need to bridge gaps between scientific models, the local political reality and local information needs.