914 resultados para HUMAN-CELLS
Resumo:
Cell adhesion molecules (CAMs) are surface receptors present in eukaryotic cells that mediate cell-cell or cell-extracellular matrix interactions. Vascular endothelium stimulation in vitro that lead to the upregulation of CAMs was reported for the pathogenic spirochaetes, including rLIC10365 of Leptospira interrogans. In this study, we report the cloning of LIC10507, LIC10508, LIC10509 genes of L interrogans using Escherichia coli as a host system. The rational for selecting these sequences is due to their location in L. interrogans serovar Copenhageni genome that has a potential involvement in pathogenesis. The genes encode for predicted lipoproteins with no assigned functions. The purified recombinant proteins were capable to promote the upregulation of intercellular adhesion molecule 1 (ICAM-1) and E-selectin on monolayers of human umbilical vein endothelial cells (HUVECS). In addition, the coding sequences are expressed in the renal tubules of animal during bacterial experimental infection. The proteins are probably located at the outer membrane of the bacteria since they are detected in detergent-phase of L interrogans Triton X-114 extract. Altogether our data suggest a possible involvement of these proteins during bacterial infection and provide new insights into the role of this region in the pathogenesis of Leptospira. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 mu m) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 mu m), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 mu M did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.
Resumo:
Transplantation of pancreatic islets isolated from organ donors constitutes a promising alternative treatment for type 1 diabetes, however, it is severely limited by the shortage of organ donors. Ex vivo islet cell cultures appear as an attractive but still elusive approach for curing type 1 diabetes. It has recently been shown that, even in the absence of fibrotic over-growth, several factors, such as insufficient nutrition of the islet core, represent a major barrier for long-term survival of islets grafts. The use of immobilized dispersed cells may contribute to solve this problem due to conceivably easier nutritional and oxygen support to the cells. Therefore, we set out to establish an immobilization method for primary cultures of human pancreatic cells by adsorption onto microcarriers (MCs). Dispersed human islets cells were seeded onto Cytodex1 microcarriers and cultured in bioreactors for up to eight days. The cell number increased and islet cells maintained their insulin secretion levels throughout the time period studied. Moreover, the cells also presented a tendency to cluster upon five days culturing. Therefore, this procedure represents a useful tool for controlled studies on islet cells physiology and, also, for biotechnological applications.
Resumo:
Oxidative damage to DNA is thought to play a role in carcinogenesis by causing Mutations, and indeed accumulation of oxidized DNA bases has been observed in samples obtained from tumors but not from surrounding tissue within the same patient. Base excision repair (BER) is the main pathway for the repair of oxidized modifications both in nuclear and mitochondrial, DNA. In order to ascertain whether diminished BER capacity might account for increased levels of oxidative DNA damage in cancer cells, the activities of BER enzymes in three different lung cancer cell lines and their non-cancerous counterparts were measured using oligonucleotide substrates with single DNA lesions to assess specific BER enzymes. The activities of four BER enzymes, OGG1, NTH1, UDG and APE1, were compared in mitochondrial and nuclear extracts. For each specific lesion, the repair activities were similar among the three cell lines used. However, the specific activities and cancer versus control comparison differed significantly between the nuclear and mitochondrial compartments. OGG1 activity, as measured by 8-oxodA incision, was upregulated in cancer cell mitochondria but down-regulated in the nucleus when compared to control cells. Similarly, NTH1 activity was also up-regulated in mitochondrial extracts from cancer cells but did not change significantly in the nucleus. Together, these results support the idea that alterations in BER capacity are associated with carcinogenesis.
Resumo:
Organotellurium(]V) compounds have been reported to have multiple biological activities including cysteine protease-inhibitory activity, mainly cathepsin B. As cathepsin B is a highly predictive indicator for prognosis and diagnosis of cancer, a possible antitumor potential for these new compounds is expected. In this work, it was investigated the effectiveness of organotellurium(IV) RT-04 to produce lethal effects in the human promyelocytic leukaemia cell line HL60. Using the MTT tetrazolium reduction test, and trypan blue exclusion assay, the IC50 for the compound after 24 h incubation was 6.8 and 0.35 mu M, respectively. Moreover, the compound was found to trigger apoptosis in HL60 cells, inducing DNA fragmentation and caspase-3, -6, and -9 activations. The apoptsosis-induced by RT-04 is probably related to the diminished Bcl-2 expression, observed by RT-PCR, in HL60-treated cells. In vivo studies demonstrated that the RT-04 treatment (2.76 mg/kg given for three consecutive days) produces no significant toxic effects for bone marrow and spleen CFU-GM. However, higher doses (5.0 and 10 mg/kg) produced a dose-dependent reduction in the number of CFU-GM of RT-04-treated mice. These results suggest that RT-04 is able to induce apoptosis in HL60 cells by Bcl-2 expression down-modulation. Further studies are necessary to better clarify the effects of this compound on bone marrow normal cells. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Bone morphogenetic protein-7 (BMP-7) is a secreted multifunctional growth factor of the TGF-beta superfamily, which is predominantly known for its osteoinductive properties and emerging potential for treatment of kidney diseases. The mature 34-38 kDa disulfide-linked homodimer protein plays a key role in the differentiation of mesenchymal cells into bone and cartilage. In this study, the full-length sequence of hBMP-7 was amplified and, then, cloned, expressed, and purified from the conditioned medium of 293T cells stably transfected with a lentiviral vector. The mature protein dimer form was properly secreted and recognized by anti-BMP-7 antibodies, and the protein was shown to be glycosilated by treatment with exoglycosidase, followed by western blotting. Moreover, the activity of the purified protein was demonstrated both in vitro, by alkaline phosphatase activity in C2C12 cells, and in vivo by induction of ectopic bone formation in Balb/c Nude mice after 21 days, respectively. This recombinant protein platform may be very useful for expression of different human cytokines and other proteins for medical applications.
Resumo:
The aim of this study was to obtain membrane-bound alkaline phosphatase from osteoblastic-like cells of human alveolar bone. Cells were obtained by enzymatic digestion and maintained in primary culture in osteogenic medium until subconfluence. First passage cells were cultured in the same medium and at 7, 14, and 21 days, total protein content, collagen content, and alkaline phosphatase activity were evaluated. Bone-like nodule formation was evaluated at 21 days. Cells in primary culture at day 14 were washed with Tris-HCl buffer, and used to extract the membrane-bound alkaline phosphatase. Cells expressed osteoblastic phenotype. The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10.0. This enzyme also hydrolyzes ATP, ADP, fructose-1-phosphate, fructose-6-phosphate, pyrophosphate and beta-glycerophosphate. PNPPase activity was reduced by typical inhibitors of alkaline phosphatase. SDS-PAGE of membrane fraction showed a single band with activity of similar to 120 kDa that could be solubilized by phospholipase C or Polidocanol. (c) 2007 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Buccal mucosa (BM) cells have been used in human biomonitoring studies for detecting DNA adducts and chromosomal damage in an epithelial cell population. In the present study, we have investigated if human BM cells are suitable for use in the single-cell gel electrophoresis (SCGE)/Comet assay as an approach for estimating the exposure of epithelial cells to DNA-damaging agents. Our results indicate that only a few cells from BM cell samples yield comets that can be analyzed by current methods, and that the yield of cells with comets is independent of the percentage of viable BM cells in the sample. Data generated after enzymatic enrichment of viable cells and immunomagnetic separation of epithelial cells suggest that most of the BM cells that do form comets are probably leukocytes. Moreover, by reevaluating specific cells after running the Comet assay, we found that viable epithelial BM cells give rise to atypical comets that are not included in the analysis. Comparing DNA migration patterns between small groups of smokers and nonsmokers indicated that long-term smoking had no effect on the subpopulation of cells that yield typical comets. Our results indicate that the SCGE assay, as it is commonly performed, may not be useful for genotoxicity monitoring in human epithelial BM cells.
Resumo:
The human buccal micronucleus cytome assay (BMCyt) is one of the most widely used techniques to measure genetic damage in human population studies. Reducing protocol variability, assessing the role of confounders, and estimating a range of reference values are research priorities that will be addressed by the HUMNXL, collaborative study. The HUMNXL, project evaluates the impact of host factors, occupation, life-style, disease status, and protocol features on the occurrence of MN in exfoliated buccal cells. In addition, the study will provide a range of reference values for all cytome endpoints. A database of 5424 subjects with buccal MN values obtained from 30 laboratories worldwide was compiled and analyzed to investigate the influence of several conditions affecting MN frequency. Random effects models were mostly used to investigate MN predictors. The estimated spontaneous MN frequency was 0.74 parts per thousand (95% CI 0.52-1.05). Only staining among technical features influenced MN frequency, with an abnormal increase for non-DNA-specific stains. No effect of gender was evident, while the trend for age was highly significant (p < 0.001). Most occupational exposures and a diagnosis of cancer significantly increased MN and other endpoints frequencies. MN frequency increased in heavy smoking (>= 40 cig/day. FR = 1.37:95% CI 1.03-.82) and decreased with daily fruit consumption (FR = 0.68; 95% CI 0.50-0.91). The results of the HUMNXL, project identified priorities for validation studies, increased the basic knowledge of the assay, and contributed to the creation of a laboratory network which in perspective may allow the evaluation of disease risk associated with MN frequency. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Bladder carcinoma is one of the most common tumors in the world and, despite the therapy currently available, most of the patients relapse. Better understanding of the factors involved in disease pathogenesis would provide insights for the development of more effective strategies in treatment. Recently, differential miRNA expression profiles in bladder urothelial carcinomas identified miR-100 down-regulation and miR-708 up-regulation among the most common alterations, although the possible influence of these miRNAs in the control of basic mechanisms in bladder tumors has not been addressed. In this context, the present study aimed to evaluate the in vitro effects of miR-100 forced expression and miR-708 inhibition in the bladder carcinoma cell line 5637. Our results showed that overexpression of miR-100 significantly inhibited growth when compared to controls at both times tested (72 and 96 hours, p<0.01) with a maximum effect at 72 hours reducing proliferation in 29.6 %. Conversely, no effects on cell growth were observed after inhibition of miR-708. MiR-100 also reduced colony formation capacity of 5637 cells by 24.4%. No alterations in cell cycle progression or apoptosis induction were observed. The effects of miR-100 on growth and clonogenicity capacity in 5637 cells evince a possible role of this miRNA in bladder carcinoma pathogenesis. Further studies are necessary to corroborate our findings and examine the potential use of this microRNA in future therapeutic interventions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)