911 resultados para HUMAN HELA-CELLS
Resumo:
Suppressors of cytokine signaling (SOCS) are encoded by immediate early genes known to inhibit cytokine responses in a classical feedback loop. SOCS gene expression has been shown to be induced by many cytokines, growth factors, and innate immune stimuli, such as LPS. In this paper, we report that the chemoattractants, IL-8 and fMLP, up-regulate SOCS1 mRNA in human myeloid cells, primary human neutrophils, PBMCs, and dendritic cells. fMLP rapidly up-regulates SOCS1, whereas the induction of SOCS1 upon IL-8 treatment is delayed. IL-8 and fMLP did not signal via Jak/STATs in primary human macrophages, thus implicating the induction of SOCS by other intracellular pathways. As chemoattractant-induced SOCS1 expression in neutrophils may play an important role in regulating the subsequent response to growth promoting cytokines like G-CSF, we investigated the effect of chemoattractant-induced SOCS1 on cytokine signal transduction. We show that pretreatment of primary human neutrophils with fMLP or IL-8 blocks G-CSF-mediated STAT3 activation. This study provides evidence for cross-talk between chemoattractant and cytokine signal transduction pathways involving SOCS proteins, suggesting that these chemotactic factors may desensitize neutrophils to G-CSF via rapid induction of SOCS1 expression.
Resumo:
Our previous studies have shown that overexpression of beta1,4-galactosyltransferase1 (beta1,4GT1) leads to increased apoptosis induced by cycloheximide (CHX) in SMMC-7721 human hepatocarcinoma cells. However, the role of beta1,4GT1 in apoptosis remains unclear. Here we demonstrated that cell surface beta1,4GT1 inhibited the autophosphorylation of epidermal growth factor receptor (EGFR) especially at Try 1068. The phosphorylation of protein kinase B (PKB/Akt) and extracellular signal-regulated protein kinase1/2 (ERK1/2), which are downstream molecules of EGFR, were also reduced in cell surface beta1,4GT1-overexpressing cells. Furthermore, the translocations of Bad and Bax that are regulated by PKB/Akt and ERK1/2 were also increased in these cells. As a result, the release of cytochrome c from mitochondria to cytosol was increased and caspase-3 was activated. In contrast, RNAi-mediated knockdown of beta1,4GT1 increased the autophosphorylation of EGFR. These results demonstrated that cell surface beta1,4GT1 may negatively regulate cell survival possibly through inhibiting and modulating EGFR signaling pathway.
Resumo:
In this study, we reported that small glutamine-rich TPR-containing protein (SGT) interacted with not only Hsp90alpha but also Hsp90beta. Confocal analysis showed that treatment of cells with Hsp90-specific inhibitor geldanamycin (GA) disrupted the interaction of SGT with Hsp90beta and this contributed to the increase of nuclear localization of SGT in HeLa cells. The increased nuclear localization of SGT was further confirmed by the Western blotting in GA-treated HeLa cells and H1299 cells. In our previous study, SGT was found to be a new pro-apoptotic factor, so we wondered whether the sub-cellular localization of SGT was related with cell apoptosis. By confocal analysis we found that the nuclear import of SGT was significantly increased in STS-induced apoptotic HeLa cells, which implied that the sub-cellular localization of SGT was closely associated with Hsp90beta and apoptosis.
Chk1 Suppresses a Caspase-2 Apoptotic Response to DNA Damage that Bypasses p53, Bcl-2, and Caspase-3
Resumo:
Evasion of DNA damage-induced cell death, via mutation of the p53 tumor suppressor or overexpression of prosurvival Bcl-2 family proteins, is a key step toward malignant transformation and therapeutic resistance. We report that depletion or acute inhibition of checkpoint kinase 1 (Chk1) is sufficient to restore ?-radiation-induced apoptosis in p53 mutant zebrafish embryos. Surprisingly, caspase-3 is not activated prior to DNA fragmentation, in contrast to classical intrinsic or extrinsic apoptosis. Rather, an alternative apoptotic program is engaged that cell autonomously requires atm (ataxia telangiectasia mutated), atr (ATM and Rad3-related) and caspase-2, and is not affected by p53 loss or overexpression of bcl-2/xl. Similarly, Chk1 inhibitor-treated human tumor cells hyperactivate ATM, ATR, and caspase-2 after ?-radiation and trigger a caspase-2-dependent apoptotic program that bypasses p53 deficiency and excess Bcl-2. The evolutionarily conserved "Chk1-suppressed" pathway defines a novel apoptotic process, whose responsiveness to Chk1 inhibitors and insensitivity to p53 and BCL2 alterations have important implications for cancer therapy. © 2008 Elsevier Inc. All rights reserved.
Resumo:
Extremely low-frequency electromagnetic fields (ELF-EMF) have been reported to induce lesions in DNA and to enhance the mutagenicity of ionising radiation. However, the significance of these findings is uncertain because the determination of the carcinogenic potential of EMFs has largely been based on investigations of large chromosomal aberrations. Using a more sensitive method of detecting DNA damage involving microsatellite sequences, we observed that exposure of UVW human glioma cells to ELF-EMF alone at a field strength of 1 mT (50 Hz) for 12 h gave rise to 0.011 mutations/locus/cell. This was equivalent to a 3.75-fold increase in mutation induction compared with unexposed controls. Furthermore, ELF-EMF increased the mutagenic capacity of 0.3 and 3 Gy gamma-irradiation by factors of 2.6 and 2.75, respectively. These results suggest not only that ELF-EMF is mutagenic as a single agent but also that it can potentiate the mutagenicity of ionising radiation. Treatment with 0.3 Gy induced more than 10 times more mutations per unit dose than irradiation with 3 Gy, indicating hypermutability at low dose.
Resumo:
The tumor suppressor p53 is commonly inhibited under conditions in which the phosphatidylinositide 3'-OH kinase/protein kinase B (PKB) Akt pathway is activated. Intracellular levels of p53 are controlled by the E3 ubiquitin ligase Mdm2. Here we show that PKB inhibits Mdm2 self-ubiquitination via phosphorylation of Mdm2 on Ser(166) and Ser(188). Stimulation of human embryonic kidney 293 cells with insulin-like growth factor-1 increased Mdm2 phosphorylation on Ser(166) and Ser(188) in a phosphatidylinositide 3'-OH kinase-dependent manner, and the treatment of both human embryonic kidney 293 and COS-1 cells with phosphatidylinositide 3'-OH kinase inhibitor LY-294002 led to proteasome-mediated Mdm2 degradation. Introduction of a constitutively active form of PKB together with Mdm2 into cells induced phosphorylation of Mdm2 at Ser(166) and Ser(188) and stabilized Mdm2 protein. Moreover, mouse embryonic fibroblasts lacking PKBalpha displayed reduced Mdm2 protein levels with a concomitant increase of p53 and p21(Cip1), resulting in strongly elevated apoptosis after UV irradiation. In addition, activation of PKB correlated with Mdm2 phosphorylation and stability in a variety of human tumor cells. These findings suggest that PKB plays a critical role in controlling of the Mdm2.p53 signaling pathway by regulating Mdm2 stability.
Resumo:
The comet assay is a sensitive tool for estimation of DNA damage and repair at the cellular level, requiring only a very small number of cells. In comparing the levels of damage or repair in different cell samples, it is possible that small experimental effects could be confounded by different cell cycle states in the samples examined, if sensitivity to DNA damage, and repair capacity, varies with the cell cycle. We assessed this by arresting HeLa cells in various cell cycle stages and then exposing them to ionizing radiation. Unirradiated cells demonstrated significant differences in strand break levels measured by the comet assay (predominantly single-strand breaks) at different cell cycle stages, increasing from G1 into S and falling again in G2. Over and above this variation in endogenous strand break levels, a significant difference in susceptibility to breaks induced by 3.5 Gy ionizing radiation was also evident in different cell cycle phases. Levels of induced DNA damage fluctuate throughout the cycle, with cells in G1 showing slightly lower levels of damage than an asynchronous population. Damage increases as cells progress through S phase before falling again towards the end of S phase and reaching lowest levels in M phase. The results from repair experiments (where cells were allowed to repair for 10 min after exposure to ionizing radiation) also showed differences throughout the cell cycle with G1-phase cells apparently being the most efficient at repair and M-phase cells the least efficient. We suggest, therefore, that in experiments where small differences in DNA damage and repair are to be investigated with the comet assay, it may be desirable to arrest cells in a specific stage of the cell cycle or to allow for differential cycle distribution.
Resumo:
Motivation: The inference of regulatory networks from large-scale expression data holds great promise because of the potentially causal interpretation of these networks. However, due to the difficulty to establish reliable methods based on observational data there is so far only incomplete knowledge about possibilities and limitations of such inference methods in this context.
Results: In this article, we conduct a statistical analysis investigating differences and similarities of four network inference algorithms, ARACNE, CLR, MRNET and RN, with respect to local network-based measures. We employ ensemble methods allowing to assess the inferability down to the level of individual edges. Our analysis reveals the bias of these inference methods with respect to the inference of various network components and, hence, provides guidance in the interpretation of inferred regulatory networks from expression data. Further, as application we predict the total number of regulatory interactions in human B cells and hypothesize about the role of Myc and its targets regarding molecular information processing.
Resumo:
We have previously identified differentially expressed genes in cell models of diabetic nephropathy and renal biopsies. Here we have performed quantitative DNA methylation profiling in cell models of diabetic nephropathy. Over 3,000 CpG units in the promoter regions of 192 candidate genes were assessed in unstimulated human mesangial cells (HMCs) and proximal tubular epithelial cells (PTCs) compared to HMCs or PTCs exposed to appropriate stimuli. A total of 301 CpG units across 38 genes (similar to 20%) were identified as differentially methylated in unstimulated HMCs versus PTCs. Analysis of amplicon methylation values in unstimulated versus stimulated cell models failed to demonstrate a >20% difference between amplicons. In conclusion, our results demonstrate that specific DNA methylation signatures are present in HMCs and PTCs, and standard protocols for exposure of renal cells to stimuli that alter gene expression may be insufficient to replicate possible alterations in DNA methylation profiles in diabetic nephropathy.
Resumo:
Background and purpose: Galegine and guanidine, originally isolated from Galega officinalis, led to the development of the biguanides. The weight-reducing effects of galegine have not previously been studied and the present investigation was undertaken to determine its mechanism(s) of action.
Experimental approach: Body weight and food intake were examined in mice. Glucose uptake and acetyl-CoA carboxylase activity were studied in 3T3-L1 adipocytes and L6 myotubes and AMP activated protein kinase (AMPK) activity was examined in cell lines. The gene expression of some enzymes involved in fat metabolism was examined in 3T3-L1 adipocytes.
Key results: Galegine administered in the diet reduced body weight in mice. Pair-feeding indicated that at least part of this effect was independent of reduced food intake. In 3T3-L1 adipocytes and L6 myotubes, galegine (50 µm-3 mm) stimulated glucose uptake. Galegine (1–300 µm) also reduced isoprenaline-mediated lipolysis in 3T3-L1 adipocytes and inhibited acetyl-CoA carboxylase activity in 3T3-L1 adipocytes and L6 myotubes. Galegine (500 µm) down-regulated genes concerned with fatty acid synthesis, including fatty acid synthase and its upstream regulator SREBP. Galegine (10 µm and above) produced a concentration-dependent activation of AMP activated protein kinase (AMPK) in H4IIE rat hepatoma, HEK293 human kidney cells, 3T3-L1 adipocytes and L6 myotubes.
Conclusions and implications: Activation of AMPK can explain many of the effects of galegine, including enhanced glucose uptake and inhibition of acetyl-CoA carboxylase. Inhibition of acetyl-CoA carboxylase both inhibits fatty acid synthesis and stimulates fatty acid oxidation, and this may to contribute to the in vivo effect of galegine on body weight.
Resumo:
The mechanism by which extracellular ADP ribose (ADPr) increases intracellular free Ca2+ concentration ([Ca2+](i)) remains unknown. We measured [Ca2+](i) changes in fura-2 loaded rat insulinoma INS-1E cells, and in primary beta-cells from rat and human. A phosphonate analogue of ADPr (PADPr) and 8-Bromo-ADPr (8Br-ADPr) were synthesized. ADPr increased [Ca2+](i) in the form of a peak followed by a plateau dependent on extracellular Ca2+. NAD(+), cADPr, PADPr, 8Br-ADPr or breakdown products of ADPr did not increase [Ca2+](i). The ADPr-induced [Ca2+](i) increase was not affected by inhibitors of TRPM2, but was abolished by thapsigargin and inhibited when phospholipase C and IP3 receptors were inhibited. MRS 2179 and MRS 2279, specific inhibitors of the purinergic receptor P2Y1, completely blocked the ADPrinduced [Ca2+](i) increase. ADPr increased [Ca2+](i) in transfected human astrocytoma cells (1321N1) that express human P2Y1 receptors, but not in untransfected astrocytoma cells. We conclude that ADPr is a specific agonist of P2Y1 receptors. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Carboxyl-terminal modulator protein (CTMP) is a tumor suppressor-like binding partner of Protein kinase B (PKB/Akt) that negative regulates this kinase. In the course of our recent work, we identified that CTMP is consistently associated with leucine zipper/EF-hand-containing transmembrane-1 (LETM1). Here, we report that adenovirus-LETM1 increased the sensitivity of HeLa cells to apoptosis, induced by either staurosporine or actinomycin D. As shown previously, LETM1 localized to the inner mitochondrial membrane. Electron-microscopy analysis of adenovirus-LETM1 transduced cells revealed that mitochondrial cristae were swollen in these cells, a phenotype similar to that observed in optic atrophy type-1 (OPA1)-ablated cells. OPA1 cleavage was increased in LETM1-overexpressing cells, and this phenotype was reversed by overexpression of OPA1 variant-7, a cleavage resistant form of OPA1. Taken together, these data suggest that LETM1 is a novel binding partner for CTMP that may play an important role in mitochondrial fragmentation via OPA1-cleavage. (C) 2009 Elsevier Inc. All rights reserved
Resumo:
DNA-dependent protein kinase (DNA-PK) has been implicated in a variety of nuclear processes including DNA double strand break repair, V(D)J recombination, and transcription. A recent study showed that DNA-PK is responsible for Ser-473 phosphorylation in the hydrophobic motif of protein kinase B (PKB/Akt) in genotoxic-stressed cells, suggesting a novel role for DNA-PK in cell signaling. Here, we report that DNA-PK activity toward PKB peptides is impaired in DNA-PK knock-out mouse embryonic fibroblast cells when compared with wild type. In addition, human glioblastoma cells expressing a mutant form of DNA-PK (M059J) displayed a lower DNA-PK activity when compared with glioblastoma cells expressing wild-type DNA- PK (M059K) when PKB peptide substrates were tested. DNA- PK preferentially phosphorylated PKB on Ser-473 when compared with its known in vitro substrate, p53. A consensus hydrophobic amino acid surrounding the Ser-473 phospho-acceptor site in PKB containing amino acids Phe at position +1 and +4 and Tyr at position -1 are critical for DNA- PK activity. Thus, these data define the specificity of DNA- PK action as a Ser-473 kinase for PKB in DNA repair signaling.
Resumo:
A study of the components of the fruits of Kigelia pinnata was undertaken to identify compounds with potential growth inhibitory activity against human melanoma cells, since extracts from the fruits of this plant have been described in traditional medicine to have application in the treatment of skin cancer and other skin ailments. A bioactivity-guided fractionation process yielded a number of crude fractions, which demonstrated cytotoxicity in vitro against human melanoma cells. Compounds isolated and identified included the isocoumarins, demethylkigelin (1) and kigelin 2), fatty acids, oleic (3) and heneicosanoic acids (4), the furonaphthoquinone, 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione (5), and ferulic acid (6). A number of structurally related synthetic compounds were also tested using the MTT assay. The most potent series of these compounds, the furonaphthoquinones, also demonstrated a cytotoxic effect in two human breast cancer cell lines tested.
Resumo:
Gene targeting by microRNAs is important in health and disease. We developed a functional assay for identifying microRNA targets and applied it to the K+ channel Kir2.1 (KCNJ2) which is dysregulated in cardiac and vascular disorders. The 3'UTR was inserted downstream of the mCherry red fluorescent protein coding sequence in a mammalian expression plasmid. MicroRNA sequences were inserted into the pSM30 expression vector which provides enhanced green fluorescent protein as an indicator of microRNA expression. HEK293 cells were co-transfected with the mCherry-3'UTR plasmid and a pSM30-based plasmid with a microRNA insert. The principle of the assay is that functional targeting of the 3'UTR by the microRNA results in a decrease in the red/green fluorescence intensity ratio as determined by automated image analysis. The method was validated with miR-1, a known downregulator of Kir2.1 expression, and was used to investigate targeting of the Kir2.1 3'UTR by miR-212. Red/green ratio was lower in miR-212-expressing cells compared to non-targeting controls, an effect that was attenuated by mutating the predicted target site. MiR-212 also reduced inward rectifier current and Kir2.1 protein in HeLa cells. This novel assay has several advantages over traditional luciferase-based assays including larger sample size, amenability to time course studies and adaptability to high-throughput screening.