981 resultados para HPLC-UV-VIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Copper Pentacyanonitrosylferrate (NCuNP) nanoparticles were prepared in formamide solvent. The material was characterized by Infrared (FTIR), X-Ray Diffraction (XRD) and Ultraviolet-Visible (UV-Vis) Spectroscopy. The Cyclic Voltammogram (CV) the modified graphite paste electrode with NCuNP exhibits two redox couples with (Eθ,)1 = 0.29 and (E θ,)2 = 0.86 V attribute at Cu(I)/Cu (II) and Fe(II)(CN)5NO/Fe(III)(CN) 5NO processes, respectively (KCl = 1.0 mol L-1; v = 20 mV s-1). The redox couple with (Eθ,)2 presents an electrocatalytic response for sulfite. The modified graphite paste electrode gives a linear response of 7.0 × 10-4 to 3.0 × 10-2 mol L-1 (r = 0.998), for sulfite determination with Detection Limit (DL) of 1.76 × 10-3 mol L-1 and an amperometric sensitivity of 3.38 mA/mol L-1 and relative standard desviations ± 3% (n=3). ©The Electrochemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemical reagents used by the textile industry are very diverse in their composition, ranging from inorganic compounds to polymeric compounds. Strong color is the most notable characteristic of textile effluents, and a large number of processes have been employed for color removal. In recent years, attention has been directed toward various natural solid materials that are able to remove pollutants from contaminated water at low cost, such as sugarcane bagasse. Cell immobilization has emerged as an alternative that offers many advantages in the biodegradation process, including the reuse of immobilized cells and high mechanical strength, which enables metabolic processes to occur under adverse conditions of pH, sterility, and agitation. Support treatment also increases the number of charges on the surface, thereby facilitating cell immobilization processes through adsorption and ionic bonds. Polyethyleneimine (PEI) is a polycationic compound known to have a positive effect on enzyme activity and stability. The aim of the present study was to investigate a low-cost alternative for the biodegradation and bioremediation of textile dyes, analyzing Saccharomyces cerevisiae immobilization in activated bagasse for the promotion of Acid Black 48 dye biodegradation in an aqueous solution. A 1 % concentration of a S. cerevisiae suspension was evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated for 240 h using UV-vis spectrophotometry. The analysis revealed significant relative absorbance values, indicating the occurrence of biodegradation in both treatments. Therefore, S. cerevisiae immobilized in sugarcane bagasse is very attractive for use in biodegradation processes for the treatment of textile effluents. © 2012 Springer Science+Business Media Dordrecht.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes research on a simple low-temperature synthesis route to prepare bismuth ferrite nanopowders by the polymeric precursor method using bismuth and iron nitrates. BiFeO 3 (BFO) nanopowders were characterized by means of X-ray diffraction analyses, (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy (Raman), thermogravimnetric analyses (TG-DTA), ultra-violet/vis (UV/Vis) and field emission scanning electron microscopy (FE-SEM). XRD patterns confirmed that a pure perovskite BiFeO 3 structure with a rhombohedral distorted perovskite structure was obtained by heating at 850 °C for 4 hours. Typical FT-IR spectra for BFO powders revealed the formation of a perovskite structure at high temperatures due to a metal-oxygen bond while Raman modes indicated oxygen octahedral tilts induced by structural distortion. A homogeneous size distribution of BFO powders obtained at 850 °C for 4 hours was verified by FE-SEM analyses. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ca1+xCu3-xTi4O12 powders were synthesized by a conventional solid-state reaction. X-ray diffraction (XRD) was performed to verify the formation of cubic CaCu3Ti4O 12 (CCTO) and orthorhombic CaTiO3 (CTO) phases at long range. Rietveld refinements indicate that excess Ca atoms added to the Ca 1-xCu3-xTi4O12 (x = 1.0) composition segregated in a CaTiO3 secondary phase suggesting that solubility limit of Ca atoms in the CaCu3Ti4O12 lattice was reached for this system. The FE-SEM images show that the Ca 1+xCu3-xTi4O12 (0 < x < 3) powders are composed of several agglomerated particles with irregular morphology. X-ray absorption near-edge structure spectroscopy (XANES) spectra indicated [TiO5Vo z]-[TiO6] complex clusters in the CaCu3Ti4O12 structure which can be associated with oxygen vacancies (Vo z = V o x, Vo •, and Vo ••) whereas in the CaTiO3 powder, this analysis indicated [TiO6]-[TiO6] complex clusters in the structure. Ultraviolet-visible (UV-vis) spectra and photoluminescence (PL) measurements for the analyzed systems revealed structural defects such as oxygen vacancies, distortions, and/or strains in CaCu3Ti4O12 and CaTiO3 lattices, respectively. © 2012 The American Ceramic Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Schiff base thiophenyl-2-methylidene-2-aminophenol (ImineOH) is obtained from a stoichiometric mixture of 2-thiophenecarboxaldehyde and 2-aminophenol in ethanol under reflux at 90 C. Its crystal structure is determined by single crystal X-ray diffraction. ImineOH packs in an orthorhombic unit cell in the Pbca space group with the unit cell parameters a = 16.942(4) Å, b = 13.4395(11) Å, and c = 17.5857(12) Å, V = 4004.1(10) Å3, Z = 16. Strong hydrogen bonds are present in the ImineOH structure. Apart from the X-ray study, ImineOH was characterized by elemental analysis (CHN-S) and FT-IR (4000 cm-1 to 400 cm-1), UV-Vis and 13C, 1H, and 15N NMR spectroscopic measurements. © 2013 Pleiades Publishing, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A disposable pencil graphite electrode modified with dsDNA was used in combination with square wave voltammetry in order to evaluate the interaction of DNA with the textile dyes Disperse Orange 1 (DO1) and Disperse Red 1 (DR1), and with the products of their electrolysis. Significant changes in the characteristic oxidation peaks of the guanine and adenine moieties of immobilized dsDNA were observed after incubation of the modified electrode for 180 s in solutions of the dyes in their original forms. The same was observed using the electrolysis products obtained by oxidation and reduction conversions. The oxidation peak currents of the guanine and adenine moieties decreased when the concentrations of DO1 and DR1 were increased up to 5.0 × 10 -6 and 1.0 × 10-6 mol L-1, respectively; the signal decreases were more pronounced after interaction with the oxidized dyes, compared to the reduced compounds. The interactions between DNA and DO1, DR1, and the electrolyzed dyes were further investigated by UV-vis spectrophotometry in solution, and different effects such as hypochromism and hyperchromism were observed in the resulting DNA spectra. The investigated interactions showed clear evidence of changes in the DNA structure, and suggested a predominant intercalation mode leading to damage in the biomolecule. © 2013 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lead molybdate (PbMoO4) crystals were synthesized by the co-precipitation method at room temperature and then processed in a conventional hydrothermal (CH) system at low temperature (70 °C for different times). These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, micro-Raman (MR) and Fourier transformed infrared (FT-IR) spectroscopies. Field emission scanning electron microscopy images were employed to observe the shape and monitor the crystal growth process. The optical properties were investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) measurements. XRD patterns and MR spectra indicate that these crystals have a scheelite-type tetragonal structure. Rietveld refinement data possibilities the evaluation of distortions in the tetrahedral [MoO 4] clusters. MR and FT-IR spectra exhibited a high mode ν1(Ag) ascribed to symmetric stretching vibrations as well as a large absorption band with two modes ν3(Eu and Au) related to anti-symmetric stretching vibrations in [MoO 4] clusters. Growth mechanisms were proposed to explain the stages involved for the formation of octahedron-like PbMoO4 crystals. UV-Vis absorption spectra indicate a reduction in optical band gap with an increase in the CH processing time. PL properties of PbMoO4 crystals have been elucidated using a model based on distortions of tetrahedral [MoO4] clusters due to medium-range intrinsic defects and intermediary energy levels (deep and shallow holes) within the band gap. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An exocellular β-(1→6)-d-glucan (lasiodiplodan) produced by a strain of Lasiodiplodia theobromae (MMLR) grown on sucrose was derivatized by sulfonation to promote anticoagulant activity. The structural features of the sulfonated β-(1→6)-d-glucan were investigated by UV-vis, FT-IR and 13C NMR spectroscopy, and the anticoagulant activity was investigated by the classical coagulation assays APTT, PT and TT using heparin as standard. The content of sulfur and degree of substitution of the sulfonated glucan was 11.73% and 0.95, respectively. UV spectroscopy showed a band at 261 nm due to the unsaturated bond formed in the sulfonation reaction. Results of FT-IR and 13C NMR indicated that sulfonyl groups were inserted on the polysaccharide. The sulfonated β-(1→6)-d-glucan presented anticoagulant activity as demonstrated by the increase in dose dependence of APTT and TT, and these actions most likely occurred because of the inserted sulfonate groups on the polysaccharide. The lasiodiplodan did not inhibit the coagulation tests. © 2012 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synthesis and characterization of ruthenium compounds of the type [RuCl2(P)2(N-N)] [(P)2 = (PPh3) 2, dppb = 1,4-bis(diphenylphosphino)butano; dppp = 1,3-bis(diphenylphosphino)propane; N-N = 5,5′-dimethyl-2,2′dipyridyl (5,5′-mebipy) or 4,4′-dimethyl-2,2′dipyridyl (4,4′-mebipy)] are described. The complexes were characterized using elemental analysis, UV-Vis and infrared spectroscopies, cyclic voltammetry, and X-ray crystallography. In vitro evaluation of the complexes, using the MTT methodology, revealed their cytotoxic activities in a range of 5.4-15.7 μM against the MDA-MB-231 breast tumor cells and showed that, in this case, they are more active than the reference metallodrug cisplatin. The in vitro antimycobacterial activities of the complexes had their Minimum Inhibitory Concentration (MIC) for MTB cell growth measured, by the REMA method. The MICs for these complexes were found to be between 12.5 and 25.0 μg/mL. The results are comparable with the second line drug cycloserine (MIC = 12.5-50.0 μg/mL), commonly used in the treatment of TB. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The peptide NS5A-1 (PPLLESWKDPDYVPPWHG), derived from hepatitis C virus (HCV) NS5A protein, was immobilized into layer-by-layer (LbL) silk fibroin (SF) films. Deposition was monitored by UV-vis absorption measurements at each bilayer deposited. The interaction SF/peptide film induced secondary structure in NS5A-1 as indicated by fluorescence and circular dichroism (CD) measurements. Voltammetric sensor (SF/NS5A-1) properties were observed when the composite film was tested in the presence of anti-HCV. The peptide-silk fibroin interaction studied here showed new architectures for immunosensors based on antigenic peptides and SF as a suitable immobilization matrix. © 2013 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, the research for new and better antimicrobial compounds is an important field due to the increase of immunocompromised patients, the use of invasive medical procedures and extensive surgeries, among others, that can affect the incidence of infections. Another big problem associated is the occurrence of drug-resistant microbial strains that impels a ceaseless search for new antimicrobial agents. In this context, a series of heterocyclic- sulfonamide complexes with Co(II) was synthesized and characterized with the aim of obtaining new antimicrobial compounds. The structural characterization was performed using different spectroscopic methods (UV-Vis, IR, and EPR). In spite of the fact that the general stoichiometry for all the complexes was Co(sulfonamide)2·nH2O, the coordination atoms were different depending on the coordinated sulfonamide. The crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H 2O was obtained by X-ray diffraction showing that Co(II) is in a slightly tetragonal distorted octahedron where sulfamethoxazole molecules act as a head-to-tail bridges between two cobalt atoms, forming polymeric chains. Besides, the activity against Mycobacterium tuberculosis, one of the responsible for tuberculosis, and the cytotoxicity on J774A.1 macrophage cells were evaluated. © 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we report the development of an efficient and rapid microwave assisted solvothermal (MAS) method to prepare wurtzite ZnS nanoparticles at 413 K using different precursors. The materials obtained were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (MET) ultraviolet-visible (UV-vis) and photoluminescence (PL) measurements. The structure, surface chemical composition and optical properties were investigated as a function of the precursor. In addition, effects as well as merits of microwave heating on the processing and characteristics of ZnS nanoparticles obtained are reported. The possible formation mechanism and optical properties of these nanoparticles were also reported. © 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a combined theoretical and experimental study on the electronic structure and photoluminescence (PL) properties of beta zinc molybdate (β-ZnMoO4) microcrystals synthesized by the hydrothermal method has been employed. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectroscopies. Their optical properties were investigated by ultraviolet-visible (UV-Vis) absorption spectroscopy and PL measurements. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level have been carried out. XRD patterns, Rietveld refinement, FT-Raman and FT-IR spectra showed that these crystals have a wolframite-type monoclinic structure. The Raman and IR frequencies experimental results are in reasonable agreement with theoretically calculated results. UV-Vis absorption measurements shows an optical band gap value of 3.17 eV, while the calculated band structure has a value of 3.22 eV. The density of states indicate that the main orbitals involved in the electronic structure of β-ZnMoO4 crystals are (O 2p-valence band and Mo 4d-conduction band). Finally, PL properties of β-ZnMoO4 crystals are explained by means of distortions effects in octahedral [ZnO6] and [MoO6] clusters and inhomogeneous electronic distribution into the lattice with the electron density map. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study was undertaken about the structural and photoluminescent properties at room temperature of CaCu3Ti4O12 (CCTO) powders synthesized by a soft chemical method and heat treated between 300 and 800 °C. The decomposition of precursor powder was followed by thermogravimetric analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) and photoluminescence (PL) measurements. XRD analyses revealed that the powders annealed at 800 °C are becoming ordered and crystallize in the cubic structure. The most intense PL emission was obtained for the sample calcined at 700 °C, which is not highly disordered (300-500 °C) and neither completely ordered (800 °C). From the spectrum it is clearly visible that the lowest wavelength peak is placed around 480 nm and the highest wavelength peak at about 590 nm. The UV/vis absorption spectroscopy measurements showed the presence of intermediate energy levels in the band gap of structurally disordered powders. © 2012 Elsevier Ltd and Techna Group S.r.l.