964 resultados para H-1 MAS NMR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel chemical subclass of toxin, [1-(3-diazenylphenyl) ethanol]iron, was identified among the compounds present in the web of the spider Nephila clavipes. This type of compound is not common among natural products, mainly in spider-venom toxins; it was shown to be a potent paralytic and/or lethal toxin applied by the spider over its web to ensure prey capture only by topical application. The structure was elucidated by means of ESI mass spectrometry, H-1-NMR spectroscopy, high-resolution (HR) mass spectrometry, and ICP spectrometry. The structure of [1-( 3-diazenylphenyl)ethanol] iron and the study of its insecticidal action may be used as a starting point for the development of new drugs for pest control in agriculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A more direct and efficient route to the syntheses of [Ru(NH3)(4)(X-Y)](BF4)(2), where X-Y can be 2-acetylpyridine (2-acpy) or 2-benzoylpyridine (2-bzpy), based on the reactions of [RuCl(NH3)(5)]Cl-2 with these ortho-substituted azines is described. The [Ru(2-acpy)(NH3)(4)](BF4)(2) and [Ru(NH3)(5)(2-bzpy)](BF4)(2) complexes have a molar conductance of 328 and 292 Ohm(-1) cm(2) mol(-1), respectively, corresponding to a 1:2 species in solution. These complexes showed two intense absorption bands around 620-650 and 380 nm, the energies of which are solvent dependent, decreasing with the increase of the Gutman's donor number of the solvent, and were assigned as metal-to-ligand charge transfer (MLCT). The complexes have oxidation potentials (Ru-II/III) of +0.380 V vs. Ag/AgCl (2-acpy) and +0.400 V vs. Ag/AgCl (2-bzpy), and reduction potentials (X-Y0/-) of -1.10 V vs. Ag/AgCl (2-acpy) and -0.950 V vs. Ag/AgCl (2-bzpy) on CF3COOH/NaCF3COO at pH=3.0, scan rate 100 mV s(-1), [Ru]=1.0x10(-3) mol l(-1). Both processes show a coupled chemical reaction. Upon oxidation of the metal center, the MLCT absorption bands are bleached and restored upon subsequent reduction. In order to confirm the structure of the complexes a detailed LH NMR investigation was performed in d(6)-acetone. Further confirmation of the structure was obtained by recording the N-15 NMR spectrum of [Ru(NH3)(4)(2-bzpy)](2+) in d(6)-DMSO using the INEPT pulse sequence improving the sensitivity of N-15 by polarization transfer from the protons to the N-15. The Nuclear Overhauser Effect (NOE) experiments were made qualitatively for [Ru(NH3)(4)(2-acpy)](2+), and showed that H-6 of the pyridine is close to a NH3 proton, which should then be in a cis position, and, hence, confirming that acpy is acting as a bidentate ligand. (C) 1999 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear low density polyethylene (LLDPE) with different branching contents were prepared from ethylene, without the addition of alpha-olefin comonomer, using a combination of catalyst precursors {Tp(Ms)}NiCl (1) (Tp(Ms) = hydridotris(3-mesitylpyrazol-1-yl)) and Cp2ZrCl2 (2) activated with MAO/TMA (1:1) in toluene at 0degreesC and by varying the nickel loading mole fraction (x(Ni)). The polymerization results showed that the turnover frequencies are strongly dependent on the x(Ni) varying from 6.6 x 10(3) to 32.1 x 10(3) mol[C2H4]/mol[Zr] h. The C-13 NMR spectra of the copolymers showed that the branch contents of the polymers increase as the x(Ni) increase in the medium promoting the production of polymers with a wide range of melting point (T-m) (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical structure of a naturally occurring furocoumarin from Dorstenia cayapiaa (1) has been established by 1D and 2D NMR methods. © 1992.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An exocellular β-(1→6)-d-glucan (lasiodiplodan) produced by a strain of Lasiodiplodia theobromae (MMLR) grown on sucrose was derivatized by sulfonation to promote anticoagulant activity. The structural features of the sulfonated β-(1→6)-d-glucan were investigated by UV-vis, FT-IR and 13C NMR spectroscopy, and the anticoagulant activity was investigated by the classical coagulation assays APTT, PT and TT using heparin as standard. The content of sulfur and degree of substitution of the sulfonated glucan was 11.73% and 0.95, respectively. UV spectroscopy showed a band at 261 nm due to the unsaturated bond formed in the sulfonation reaction. Results of FT-IR and 13C NMR indicated that sulfonyl groups were inserted on the polysaccharide. The sulfonated β-(1→6)-d-glucan presented anticoagulant activity as demonstrated by the increase in dose dependence of APTT and TT, and these actions most likely occurred because of the inserted sulfonate groups on the polysaccharide. The lasiodiplodan did not inhibit the coagulation tests. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new series of complexes of general formulae [PdX2(tmdmPz)] {X = Cl (1), Br (2), I (3), SCN (4); tmdmPz = N′-methyl-3,5-dimethyl-1- thiocarbamoylpyrazole} have been synthesized and characterized by elemental analysis, molar conductivities, IR, 1H and 13C{ 1H} NMR spectroscopy. In these complexes, the tmdmPz coordinates to Pd(II) center as a neutral N,S-chelating ligand. The geometries of the complexes have been optimized with the DFT method. Cytotoxicity evaluation against LM3 (mammary adenocarcinoma) and LP07 (lung adenocarcinoma) cell lines indicated that complexes 1-4 were more active than cisplatin. The binding of the complexes with a purine base (guanosine) was investigated by 1H NMR and mass spectrometry, showing that the coordination of guanosine occurs through N7. Electrophoretic DNA migration studies showed that all of them modify the DNA tertiary structure. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis and total NMR characterization of 5-thia-1-azabicyclo-[4.2.0]oct-2-ene-2-carboxylic acid-3-[[[(4″- nitrophenoxy)carbonyl]oxy]-methyl]-8-oxo-7-[(2-thienyloxoacetyl)amino] -diphenylmethyl ester-5-dioxide (5), a new cephalosporin derivative. This compound can be used as the carrier of a wide range of drugs containing an amino group. The preparation of the intermediate product, 5-thia-1-azabicyclo[4.2.0] oct-2-ene-2-carboxylic acid-3-[methyl 4-(6-methoxyquinolin-8-ylamino) pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl)amino]-diphenylmethyl ester-5-dioxide (6), as well as the synthesis of the antimalarial primaquine prodrug 5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid-3-[methyl 4-(6-methoxyquinolin-8-ylamino)pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl) amino]- 5-dioxide (7) are also described, together with their total 1H- and 13C-NMR assignments. © 2008 by MDPI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ( Z)-4,4,4-trifluoro-3-(2-hydroxyethylamino)-1-(2-hydroxyphenyl)-2-buten-1-one (C12H12F3NO3) compound was thoroughly studied by IR, Raman, UV-visible, and C-13 and F-19 NMR spectroscopies. The solid-state molecular structure was determined by X-ray diffraction methods. It crystallizes in the P2(1)/c space group with a = 12.1420(4) angstrom, b = 7.8210(3) angstrom, c := 13.8970(5) angstrom, beta = 116.162(2)degrees, and Z = 4 molecules per unit cell. The molecule shows a nearly planar molecular skeleton, favored by intramolecular OH center dot center dot center dot 0 and NH center dot center dot center dot 0 bonds, which are arranged in the lattice as an OH center dot center dot center dot 0 bonded polymer coiled around crystallographic 2-fold screw-axes. The three postulated tautomers were evaluated using quantum chemical calculations. The lowest energy tautomer (I) calculated with density functional theory methods agrees with the observed crystal structure. The structural and conformational properties are discussed considering the effect of the intra- and intermolecular hydrogen bond interactions.