992 resultados para Great Salt Lake (Utah) -- Aerial photographs
Resumo:
High-resolution numerical model simulations have been used to study the local and mesoscale thermal circulations in an Alpine lake basin. The lake (87 km(2)) is situated in the Southern Alps, New Zealand and is located in a glacially excavated rock basin surrounded by mountain ranges that reach 3000 m in height. The mesoscale model used (RAMS) is a three-dimensional non-hydrostatic model with a level 2.5 turbulence closure scheme. The model demonstrates that thermal forcing at local (within the basin) and regional (coast-to-basin inflow) scales drive the observed boundary-layer airflow in the lake basin during clear anticyclonic summertime conditions. The results show that the lake can modify (perturb) both the local and regional wind systems. Following sunrise, local thermal circulations dominate, including a lake breeze component that becomes embedded within the background valley wind system. This results in a more divergent flow in the basin extending across the lake shoreline. However, a closed lake breeze circulation is neither observed nor modelled. Modelling results indicate that in the latter part of the day when the mesoscale (coast-to-basin) inflow occurs, the relatively cold pool of lake air in the basin can cause the intrusion to decouple from the surface. Measured data provide qualitative and quantitative support for the model results.
Resumo:
A research program on atmospheric boundary layer processes and local wind regimes in complex terrain was conducted in the vicinity of Lake Tekapo in the southern Alps of New Zealand, during two 1-month field campaigns in 1997 and 1999. The effects of the interaction of thermal and dynamic forcing were of specific interest, with a particular focus on the interaction of thermal forcing of differing scales. The rationale and objectives of the field and modeling program are described, along with the methodology used to achieve them. Specific research aims include improved knowledge of the role of surface forcing associated with varying energy balances across heterogeneous terrain, thermal influences on boundary layer and local wind development, and dynamic influences of the terrain through channeling effects. Data were collected using a network of surface meteorological and energy balance stations, radiosonde and pilot balloon soundings, tethered balloon and kite-based systems, sodar, and an instrumented light aircraft. These data are being used to investigate the energetics of surface heat fluxes, the effects of localized heating/cooling and advective processes on atmospheric boundary layer development, and dynamic channeling. A complementary program of numerical modeling includes application of the Regional Atmospheric Modeling System (RAMS) to case studies characterizing typical boundary layer structures and airflow patterns observed around Lake Tekapo. Some initial results derived from the special observation periods are used to illustrate progress made to date. In spite of the difficulties involved in obtaining good data and undertaking modeling experiments in such complex terrain, initial results show that surface thermal heterogeneity has a significant influence on local atmospheric structure and wind fields in the vicinity of the lake. This influence occurs particularly in the morning. However, dynamic channeling effects and the larger-scale thermal effect of the mountain region frequently override these more local features later in the day.
Resumo:
In order to develop a method for use in investigations of spatial biomass distribution in solid-state fermentation systems, confocal scanning laser microscopy was used to determine the concentrations of aerial and penetrative biomass against height and depth above and below the substrate surface, during growth of Rhizopus oligosporus on potato dextrose agar. Penetrative hyphae had penetrated to a depth of 0.445 cm by 64 h and showed rhizoid morphology, in which the maximum biomass concentration, of 4.45 mg dry wt cm(-3), occurred at a depth of 0.075 cm. For aerial biomass the maximum density of 39.54 mg dry wt(-3) occurred at the substrate surface. For both aerial and penetrative biomass, there were two distinct regions in which the biomass concentration decayed exponentially with distance from the surface. For aerial biomass, the first exponential decay region was up to 0.1 cm height. The second region above the height of 0.1 cm corresponded to that in which sporangiophores dominated. This work lays the foundation for deeper studies into what controls the growth of fungal hyphae above and below the surfaces of solid substrates. (C) Wiley Periodicals, Inc.
Resumo:
In response to recent reports of contamination of the nearshore marine environment along the Queensland coast by herbicides (including areas inside the Great Barrier Reef Marine Park), an ecotoxicological assessment was conducted of the impact of the herbicides diuron and atrazine on scleractinian corals. Pulse-amplitude modulated (PAM) chlorophyll fluorescence techniques were used to assess the herbicide effects on the symbiotic dinoflagellates within the tissues (in hospite) of 4 species of coral (Acropora formosa, Montipora digitata, Porites cylindrica, Seriatopora hystrix) in static toxicity tests, and in freshly isolated symbiotic dinoflagellates from Stylophora pistillata. Using change in the effective quantum yield (DeltaF/F-m') as an effect criterion, diuron (no observable effect concentration, NOEC = 0.3 mug 1(-1); lowest observable effect concentration, LOEC = 1 mug 1(-1); median effective concentration, EC50 4 to 6 mug 1(-1)) was found to be more toxic than atrazine (NOEC = 1 mug 1(-1), LOEC = 3 mug 1(-1), EC50 40 to 90 mug 1(-1)) in short-term (10 h) toxicity tests. In the tests with isolated algae, significant reductions in DeltaF/F-m' were recorded as low as 0.25 mug 1(-1) diuron (LOEC, EC50 = 5 mug 1(-1)). Time-course experiments indicated that the effects of diuron were rapid and reversible. At 10 mug 1(-1) diuron, DeltaF/F-m' was reduced by 25% in 20 to 30 min, and by 50% in 60 to 90 min. Recovery of DeltaF/F-m' in corals exposed to 10 mug 1(-1) diuron and then transferred to running seawater was slower, returning to within 10% of control values inside 1 to 7 h. The effect of a reduction in salinity (35 to 27%) on diuron toxicity (at 1 and 3 mug 1(-1) diuron) was tested to examine the potential consequences of contaminated coastal flood plumes inundating inshore reefs. DeltaF/F-m' was reduced in the diuron-exposed corals, but there was no significant interaction between diuron and reduced salinity seawater within the 10 h duration of the test. Exposure to higher (100 and 1000 mug 1(-1)) diuron concentrations for 96 h caused a reduction in DeltaF/F-m' the ratio variable to maximal fluorescence (F,1F.), significant loss of symbiotic dinoflagellates and pronounced tissue retraction, causing the corals to pale or bleach. The significance of the results in relation to diuron contamination of the coastal marine environment from terrestrial sources (mainly agricultural) and marine sources (antifouling paints) are discussed.
Resumo:
With recent advances in molecular biology, it is now possible to use the trace amounts of DNA in faeces to non-invasively sample endangered species for genetic studies. A highly vulnerable population of approximately 100 great bustards (Otis tarda) exists in Morocco necessitating the use of non-invasive protocols to study their genetic structure. Here we report a reliable silica-based method to extract DNA from great bustard faeces. We found that successful extraction and amplification correlated strongly with faeces freshness and composition. We could not extract amplifiable DNA from 30% of our samples as they were dry or contained insect material. However 100% of our fresh faecal samples containing no obvious insect material worked, allowing us to assess the levels of genetic variation among 25 individuals using a 542 bp control region sequence. We were able to extract DNA from four out of five other avian species, demonstrating that faeces represents a suitable source of DNA for population genetics studies in a broad range of species.
Resumo:
Recent advances in molecular biology have made it possible to use the trace amounts of DNA in faeces to non-invasively sample endangered species for genetic studies. Here we use faeces as a source of DNA and mtDNA sequence data to elucidate the relationship among Spanish and Moroccan populations of great bustards. 834 bp of combined control region and cytochrome-b mtDNA fragments revealed four variable sites that defined seven closely related haplotypes in 54 individuals. Morocco was fixed for a single mtDNA haplotype that occurs at moderate frequency (28%) in Spain. We could not differentiate among the sampled Spanish populations of Caceres and Andalucia but these combined populations were differentiated from the Moroccan population. Estimates of gene flow (Nm = 0.82) are consistent with extensive observations on the southern Iberian peninsular indicating that few individuals fly across the Strait of Gibraltar. We demonstrate that both this sea barrier and mountain barriers in Spain limit dispersal among adjacent great bustard populations to a similar extent. The Moroccan population is of high ornithological significance as it holds the only population of great bustards in Africa. This population is critically small and genetic and observational data indicate that it is unlikely to be recolonised via immigration from Spain should it be extirpated. In light of the evidence presented here it deserves the maximum level of protection.
Resumo:
Low-temperature (15 K) single-crystal neutron-diffraction structures and Raman spectra of the salts (NX4)(2)[CU(OX2)(6)](SO4)(2), where X = H or D, are reported. This study is concerned with the origin of the structural phase change that is known to occur upon deuteration. Data for the deuterated salt were measured in the metastable state, achieved by application of 500 bar of hydrostatic pressure at similar to303 K followed by cooling to 281 K and the subsequent release of pressure. This allows for the direct comparison between the hydrogenous and deuterated salts, in the same modification, at ambient pressure and low temperature. The Raman spectra provide no intimation of any significant change in the intermolecular bonding. Furthermore, structural differences are few, the largest being for the long Cu-O bond, which is 2.2834(5) and 2.2802(4) Angstrom for the hydrogenous and the deuterated salts, respectively. Calorimetric data for the deuterated salt are also presented, providing an estimate of 0.17(2) kJ/mol for the enthalpy difference between the two structural forms at 295.8(5) K. The structural data suggest that substitution of hydrogen for deuterium gives rise to changes in the hydrogen-bonding interactions that result in a slightly reduced force field about the copper(II) center. The small structural differences suggest different relative stabilities for the hydrogenous and deuterated salts, which may be sufficient to stabilize the hydrogenous salt in the anomalous structural form.
Resumo:
Cardiac hypertrophy that accompanies hypertension seems to be a phenomenon of multifactorial origin whose development does not seem to depend on an increased pressure load alone, but also on local growth factors and cardioadrenergic activity. The aim of the present study was to determine if sympathetic renal denervation and its effects on arterial pressure level can prevent cardiac hypertrophy and if it can also delay the onset and attenuate the severity of deoxycorticosterone acetate (DOCA)-salt hypertension. DOCA-salt treatment was initiated in rats seven days after uninephrectomy and contralateral renal denervation or sham renal denervation. DOCA (15 mg/kg, sc) or vehicle (soybean oil, 0.25 ml per animal) was administered twice a week for two weeks. Rats treated with DOCA or vehicle (control) were provided drinking water containing 1% NaCl and 0.03% KCl. At the end of the treatment period, mean arterial pressure (MAP) and heart rate measurements were made in conscious animals. Under ether anesthesia, the heart was removed and the right and left ventricles (including the septum) were separated and weighed. DOCA-salt treatment produced a significant increase in left ventricular weight/body weight (LVW/BW) ratio (2.44 ± 0.09 mg/g) and right ventricular weight/body weight (RVW/BW) ratio (0.53 ± 0.01 mg/g) compared to control (1.92 ± 0.04 and 0.48 ± 0.01 mg/g, respectively) rats. MAP was significantly higher (39%) in DOCA-salt rats. Renal denervation prevented (P>0.05) the development of hypertension in DOCA-salt rats but did not prevent the increase in LVW/BW (2.27 ± 0.03 mg/g) and RVW/BW (0.52 ± 0.01 mg/g). We have shown that the increase in arterial pressure level is not responsible for cardiac hypertrophy, which may be more related to other events associated with DOCA-salt hypertension, such as an increase in cardiac sympathetic activity.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Fitopatologia, Programa de Pós-Graduação em Fitopatologia, 2015.
Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration
Resumo:
Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.
Resumo:
ABSTRACT Large salty areas in the Brazilian semi-arid region have limited farming in Northeastern Brazil. One example is the sugar cane cultivation, which reinforces the need of selecting varieties that are more tolerant to salinity. The objective of this study was to evaluate the effect of salinity on growth of ten varieties of sugar cane. The experiment was conducted in a greenhouse, set in the experimental field of Embrapa Semiárido, in Petrolina, Pernambuco State. The experimental design was randomized blocks arranged in a 6 X 10 factorial arrangement, comprised of six levels of salinity (0, 1.0, 2.0, 4.0, 6.0 and 8.0 dS m-1) and ten sugar cane varieties (VAT 90212; RB 72454; RB 867515; Q 124; RB 961003; RB 957508; SP791011; RB 835089; RB 92579 and SP 943206). Salt levels of irrigation water were obtained by adding NaCl, CaCl2.2H2O and MgSO4.7H2O to achieve an equivalent ratio among Na:Ca:Mg of 7:2:1. Sixty days later, plant height, stem diameter (base), number of leaves, stalks and sprouts, leaf area and fresh and dry mass of the aerial part and roots were all measured. The varieties of sugar cane showed similar responses for growth reduction as soil salinity increases, being considered moderately sensitive to salinity.