903 resultados para Gram-Positive, Bacterial Infections


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibrio cholerae Cytolysin (VCC) gehört zur Gruppe der Exotoxine und bildet auf Membranen heptamere transmembrane Poren. VCC wird als protoxin mit einem Molekulargewicht von 79 kDa sezerniert und benötigt die proteolytische Spaltung der N-terminalen Pro-Region um Poren in der Membran zu bilden. Diese Spaltung erfolgt sowohl in Lösung, als auch nach der Bindung an Membranen, aber nur aktiviertes VCC oligomererisiert in eine lytische Pore. Die Kristallstruktur von VCC zeigt, dass das Monomer vier verschiedenen strukturellen Domänen enthält; die cytolytische Domäne, mit der Pre-Stem-Sequenz, der Pro-Region und den beiden C-terminalen Domänen β-Trefoil und β-Prism. Die porenbildende β-Barrel wird aus je einer Pre-Stem Domäne jedes der einzelnen sieben Untereinheiten gebildet. Da sich die porenbildende Region im Monomer zwischen den Domänen β-Prism und β-Trefoil befindet, sind konformationelle Änderungen des Toxins notwendig, um die Insertion dieser Region in die Membran zu ermöglichen. In dieser Arbeit wurde unter anderem der Mechanismus der Porenbildung durch die Konstruktion von Disulfid-Derivaten untersucht. Die Bildung von Disulfidbrücken wurde verwendet, um die porenbildende Region entweder mit der β-Trefoil oder β-Prism Domäne zu verknüpfen. Unter nicht-reduzierenden Bedingungen bindet das Toxin an Membranen und oligomerisiert zu SDS-labilen Oligomeren. Nach der Reduktion der künstlichen Disulfidbrücke erlangen die gebildeten Oligomere SDS-Stabilität und permeabilisieren die Membran. Durch die Zugabe steigender Konzentrationen des VCC-Derivats zu aktivem Toxin, wird die SDS-Stabilität der gebildeten Oligomere stark reduziert. Die Insertion des aktiven Toxins in die Membran wird allerdings nicht verhindert und daher Poren mit reduziertem funktionellen Durchmesser gebildet. Diese Ergebnisse verdeutlichen, dass die Bildung einer Prä-Pore vor der Insertion des Toxins in die Membran erfolgt und zeigt zum ersten Mal ein solches Zwischenstadium für ein β-porenbildendes Toxin, das von Gram-negativen Organismen produziert wird. Diese Ergebnisse deuten auf einen archetypischen Mechanismus der Porenbildung hin. Zusätzlich wurde die Funktion der beiden C-terminalen Domänen untersucht, und daher verschiedene Deletions- und Substitutionsmutanten konstruiert. Die β-Trefoil Domäne ist nicht essentiell für die Bindung des Toxins an Membranen, ist aber für die korrekte Faltung des Toxins notwendig. Die C-terminale β-Prism Domäne vermittelt die Bindung des Toxins an Membranen über Zuckerrezeptoren.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obiettivo: Valutare l’accuratezza reciproca dell’ecografia “esperta” e della risonanza magnetica nelle diagnosi prenatale delle anomalie congenite. Materiali e metodi: Sono stati retrospettivamente valutati tutti i casi di malformazioni fetali sottoposte a ecografia “esperta” e risonanza magnetica nel nostro Policlinico da Ottobre 2001 a Ottobre 2012. L’età gestazionale media all’ecografia e alla risonanza magnetica sono state rispettivamente di 28 e 30 settimane. La diagnosi ecografica è stata confrontata con la risonanza e quindi con la diagnosi postnatale. Risultati: sono stati selezionati 383 casi, con diagnosi ecografica o sospetta malformazione fetale “complessa” o anamnesi ostetrica positiva infezioni prenatali, valutati con ecografia “esperta”, risonanza magnetica e completi di follow up. La popolazione di studio include: 196 anomalie del sistema nervoso centrale (51,2%), 73 difetti toracici (19,1%), 20 anomalie dell’area viso-collo (5,2%), 29 malformazioni del tratto gastrointestinale (7,6%), 37 difetti genito-urinari (9,7%) e 28 casi con altra indicazione (7,3%). Una concordanza tra ecografia, risonanza e diagnosi postnatale è stata osservata in 289 casi (75,5%) ed è stata maggiore per le anomalie del sistema nervoso centrale 156/196 casi (79,6%) rispetto ai difetti congeniti degli altri distretti anatomici 133/187 (71,1%). La risonanza ha aggiunto importanti informazioni diagnostiche in 42 casi (11%): 21 anomalie del sistema nervoso centrale, 2 difetti dell’area viso collo, 7 malformazioni toraciche, 6 anomalie del tratto gastrointestinale, 5 dell’apparato genitourinario e 1 caso di sospetta emivertebra lombare. L’ecografia è stata più accurata della risonanza in 15 casi (3,9%). In 37 casi (9,7%) entrambe le tecniche hanno dato esito diverso rispetto agli accertamenti postnatali. Conclusioni: l’ecografia prenatale rimane a tutt’oggi la principale metodica di imaging fetale. In alcuni casi complessi e/o dubbi sia del sistema nervoso centrale sia degli altri distretti anatomici la risonanza può aggiungere informazioni rilevanti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Laufe der Evolution entwickelte sich eine Reihe von Sauerstoff-Sensorsystemen in Bakterien, um die Genexpression der Sauerstoffverfügbarkeit anzupassen. Der Sauerstoffsensor FNR aus Escherichia coli bindet unter anaeroben Bedingungen ein [4Fe4S]2+ Zentrum. Unter Sauerstoffeinfluß zerfällt aktives [4Fe4S]2+FNR zu inaktivem [2Fe2S]2+FNR und weiter zu ebenfalls inaktivem apoFNR. In der vorliegenden Arbeit wurde der Zustand von FNR in vivo in aeroben und anaeroben Zellen von Escherichia coli aufgeklärt. Durch Alkylierung der Cysteine in FNR und anschließender Analyse im Massenspektrometer konnte gezeigt werden, das FNR in aeroben Zellen hauptsächlich in der apo-Form vorliegt. Nach ca. 6 Minuten war in lebenden E. coli Zellen die Umwandlung von [4Fe4S]2+ FNR zu apoFNR abgeschlossen.rnrnIn dem gram positiven Bakterium Staphylococcus carnosus aktiviert das NreBC System unter anaeroben Wachstumsbedingungen die Gene der Nitratatmung. NreB ist eine cytoplasmatische Sensorhistidinkinase, die ein sauerstofflabiles [4Fe4S]2+ Zentrum über eine PAS-Domäne bindet. Das [4Fe4S]2+ Zentrum wird von vier Cysteinen gebunden. Der Responsregulator NreC steuert nach Aktivierung durch NreB die Transkription der Zielgene. In der vorliegenden Arbeit wurde NreB mit Hilfe von Cysteinmarkierungen in vivo charakterisiert. Durch die Änderung der Cystein-Zugänglichkeit für Thiolreagenzien nach Sauerstoffzugabe konnte eine Halbwertszeit von ca. 3 Minuten für das [4Fe4S]2+ Zentrum in vivo bestimmt werden. In anaeroben Bakterien stellt [4Fe4S]2+NreB die Hauptform von NreB dar, während in aeroben Bakterien hauptsächlich apoNreB vorkommt. Dieses Ergebnis konnte durch Massenspektroskopie bestätigt werden. Weiterhin konnte gezeigt werden das NreA mit NreB und NreC wechselwirkt und Bestandteil des NreABC Drei-Komponentensystems ist. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptococcus agalactiae, also known as Group B Streptococcus (GBS) is the primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30-76% of the cases of neonatal meningitis. Biofilms are dense aggregates of surface-adherent microorganisms embedded in an exopolysaccharide matrix. Centers for Disease Control and Prevention estimate that 65% of human bacterial infections involve biofilms (Post et al., 2004). In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and/or virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low- and non- biofilm forming strains and reduce ambiguous data interpretation. This protocol was applied to screen the in vitro biofilm formation ability of more than 350 GBS clinical isolates from pregnant women and neonatal infections belonging to different serotype, in relation to media composition and pH. The results showed the enhancement of GBS biofilm formation in acidic condition and identified a subset of isolates belonging to serotypes III and V that forms strong biofilms in these conditions. Interestingly, the best biofilm formers belonged to the serotype III hypervirulent clone ST-17.It was also found that pH 5.0 induces down-regulation of the capsule but that this reduction is not enough by itself to ensure biofilm formation. Moreover, the ability of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm formation and contribute to the biofilm structural stability. Finally, a set of proteins potentially expressed during the GBS in vitro biofilm formation were identified by mass spectrometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most serious problems of the modern medicine is the growing emergence of antibiotic resistance among pathogenic bacteria. In this circumstance, different and innovative approaches for treating infections caused by multidrug-resistant bacteria are imperatively required. Bacteriophage Therapy is one among the fascinating approaches to be taken into account. This consists of the use of bacteriophages, viruses that infect bacteria, in order to defeat specific bacterial pathogens. Phage therapy is not an innovative idea, indeed, it was widely used around the world in the 1930s and 1940s, in order to treat various infection diseases, and it is still used in Eastern Europe and the former Soviet Union. Nevertheless, Western scientists mostly lost interest in further use and study of phage therapy and abandoned it after the discovery and the spread of antibiotics. The advancement of scientific knowledge of the last years, together with the encouraging results from recent animal studies using phages to treat bacterial infections, and above all the urgent need for novel and effective antimicrobials, have given a prompt for additional rigorous researches in this field. In particular, in the laboratory of synthetic biology of the department of Life Sciences at the University of Warwick, a novel approach was adopted, starting from the original concept of phage therapy, in order to study a concrete alternative to antibiotics. The innovative idea of the project consists in the development of experimental methodologies, which allow to engineer a programmable synthetic phage system using a combination of directed evolution, automation and microfluidics. The main aim is to make “the therapeutics of tomorrow individualized, specific, and self-regulated” (Jaramillo, 2015). In this context, one of the most important key points is the Bacteriophage Quantification. Therefore, in this research work, a mathematical model describing complex dynamics occurring in biological systems involving continuous growth of bacteriophages, modulated by the performance of the host organisms, was implemented as algorithms into a working software using MATLAB. The developed program is able to predict different unknown concentrations of phages much faster than the classical overnight Plaque Assay. What is more, it gives a meaning and an explanation to the obtained data, making inference about the parameter set of the model, that are representative of the bacteriophage-host interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: The purpose of this study was to investigate the adhesion and invasion of periodontopathogenic bacteria in varied mixed infections and the release of interleukins from an epithelial cell line (KB cells). METHODS: KB cells were co-cultured with Porphyromonas gingivalis ATCC 33277 and M5-1-2, Tannerella forsythia ATCC 43037, Treponema denticola ATCC 35405 and Fusobacterium nucleatum ATCC 25586 in single and mixed infections. The numbers of adherent and internalized bacteria were determined up to 18 h after bacterial exposure. Additionally, the mRNA expression and concentrations of released interleukin (IL)-6 and IL-8 were measured. RESULTS: All periodontopathogenic bacteria adhered and internalized in different numbers to KB cells, but individually without any evidence of co-aggregation also to F. nucleatum. High levels of epithelial mRNA of IL-6 and IL-8 were detectable after all bacterial challenges. After the mixed infection of P. gingivalis ATCC 33277 and F. nucleatum ATCC 25586 the highest levels of released interleukins were found. No IL-6 and IL-8 were detectable after the mixed infection of P. gingivalis M5-1-2 and F. nucleatum ATCC 25586 and the fourfold infection of P. gingivalis ATCC 33277, T. denticola ATCC 35405, T. forsythia ATCC 43037 and F. nucleatum ATCC 25586. CONCLUSION: Anaerobic periodontopathogenic bacteria promote the release of IL-6 and IL-8 by epithelial cells. Despite a continuous epithelial expression of IL-8 mRNA by all bacterial infections these effects are temporary because of the time-dependent degradation of cytokines by bacterial proteases. Mixed infections have a stronger virulence potential than single bacteria. Further research is necessary to evaluate the role of mixed infections and biofilms in the pathogenesis of periodontitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have sequenced the genome of Desulfosporosinus sp. OT, a Gram-positive, acidophilic sulfate-reducing Firmicute isolated from copper tailing sediment in the Norilsk mining-smelting area in Northern Siberia, Russia. This represents the first sequenced genome of a Desulfosporosinus species. The genome has a size of 5.7 Mb and encodes 6,222 putative proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions. It initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses. The interaction between respiratory viruses and airway epithelial cells results in production of antiviral substances, including type I and III interferons, lactoferrin, β-defensins, and nitric oxide, and also in production of cytokines and chemokines, which recruit inflammatory cells and influence adaptive immunity. These defense mechanisms usually result in rapid virus clearance. However, respiratory viruses elaborate strategies to evade antiviral mechanisms and immune responses. They may disrupt epithelial integrity through cytotoxic effects, increasing paracellular permeability and damaging epithelial repair mechanisms. In addition, they can interfere with immune responses by blocking interferon pathways and by subverting protective inflammatory responses toward detrimental ones. Finally, by inducing overt mucus secretion and mucostasis and by paving the way for bacterial infections, they favor lung damage and further impair host antiviral mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transferrin (TF)-mediated provision of iron is essential for a productive infection by many bacterial pathogens, and iron-depletion of TF is a first line defence against bacterial infections. Therefore, the transferrin (TF) gene can be considered a candidate gene for disease resistance. We obtained the complete DNA sequence of the porcine TF gene, which spans 40 kb and contains 17 exons. We identified polymorphisms on a panel of 10 different pig breeds. Comparative intra- and interbreed sequence analysis revealed 62 polymorphisms in the TF gene including one microsatellite. Ten polymorphisms were located in the coding sequence of the TF gene. Four SNPs (c.902A>T, c.980G>A, c.1417A>G, c.1810A>C) were predicted to cause amino acid exchanges (p.Lys301Ile, p.Arg327Lys, p.Lys473Glu, p.Asn604His). We performed association analyses using six selected TF markers and 116 pigs experimentally infected with Actinobacillus pleuropneumoniae serotype 7. The analysis showed breed-specific TF allele frequencies. In German Landrace, we found evidence for a possible association of the severity of A. pleuropneumoniae infection with TF genotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleotide-binding and oligomerization domain (NOD)-like receptors constitute a first line of defense against invading bacteria. X-linked Inhibitor of Apoptosis (XIAP) is implicated in the control of bacterial infections, and mutations in XIAP are causally linked to immunodeficiency in X-linked lymphoproliferative syndrome type-2 (XLP-2). Here, we demonstrate that the RING domain of XIAP is essential for NOD2 signaling and that XIAP contributes to exacerbation of inflammation-induced hepatitis in experimental mice. We find that XIAP ubiquitylates RIPK2 and recruits the linear ubiquitin chain assembly complex (LUBAC) to NOD2. We further show that LUBAC activity is required for efficient NF-κB activation and secretion of proinflammatory cytokines after NOD2 stimulation. Remarkably, XLP-2-derived XIAP variants have impaired ubiquitin ligase activity, fail to ubiquitylate RIPK2, and cannot facilitate NOD2 signaling. We conclude that XIAP and LUBAC constitute essential ubiquitin ligases in NOD2-mediated inflammatory signaling and propose that deregulation of NOD2 signaling contributes to XLP-2 pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterococcus hirae ATCC 9790 is a Gram-positive lactic acid bacterium that has been used in basic research for over 4 decades. Here we report the sequence and annotation of the 2.8-Mb genome of E. hirae and its endemic 29-kb plasmid pTG9790.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The large family of chemoattractant cytokines (chemokines) embraces multiple, in part unrelated functions that go well beyond chemotaxis. Undoubtedly, the control of immune cell migration (chemotaxis) is the single, unifying response mediated by all chemokines, which involves the sequential engagement of chemokine receptors on migrating target cells. However, numerous additional cellular responses are mediated by some (but not all) chemokines, including angiogenesis, tumor cell growth, T-cell co-stimulation, and control of HIV-1 infection. The recently described antimicrobial activity of several chemokines is of particular interest because antimicrobial peptides are thought to provide an essential first-line defense against invading microbes at the extremely large body surfaces of the skin, lungs, and gastrointestinal-urinary tract. Here we summarize the current knowledge about chemokines with antimicrobial activity and discuss their potential contribution to the control of bacterial infections that may take place at the earliest stage of antimicrobial immunity. In the case of homeostatic chemokines with antimicrobial function, such as CXCL14, we propose an immune surveillance function in healthy epithelial tissues characterized by low-level exposure to environmental microbes. Inflammatory chemokines, i.e., chemokines that are produced in tissue cells in response to microbial antigens (such as pathogen-associated molecular patterns) may be more important in orchestrating the cellular arm in antimicrobial immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During evolution, pathogenic bacteria have developed complex interactions with their hosts. This has frequently involved the acquisition of virulence factors on pathogenicity islands, plasmids, transposons, or prophages, allowing them to colonize, survive, and replicate within the host. In contrast, Mycoplasma species, the smallest self-replicating organisms, have regressively evolved from gram-positive bacteria by reduction of the genome to a minimal size, with the consequence that they have economized their genetic resources. Hence, pathogenic Mycoplasma species lack typical primary virulence factors such as toxins, cytolysins, and invasins. Consequently, little is known how pathogenic Mycoplasma species cause host cell damage, inflammation, and disease. Here we identify a novel primary virulence determinant in Mycoplasma mycoides subsp. mycoides Small Colony (SC), which causes host cell injury. This virulence factor, released in significant amounts in the presence of glycerol in the growth medium, consists of toxic by-products such as H2O2 formed by l-alpha-glycerophosphate oxidase (GlpO), a membrane-located enzyme that is involved in the metabolism of glycerol. When embryonic calf nasal epithelial cells are infected with M. mycoides subsp. mycoides SC in the presence of physiological amounts of glycerol, H2O2 is released inside the cells prior to cell death. This process can be inhibited with monospecific anti-GlpO antibodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.