938 resultados para Generation from examples
Resumo:
Pollution of water with pesticides has become a threat to the man, material and environment. The pesticides released to the environment reach the water bodies through run off. Industrial wastewater from pesticide manufacturing industries contains pesticides at higher concentration and hence a major source of water pollution. Pesticides create a lot of health and environmental hazards which include diseases like cancer, liver and kidney disorders, reproductive disorders, fatal death, birth defects etc. Conventional wastewater treatment plants based on biological treatment are not efficient to remove these compounds to the desired level. Most of the pesticides are phyto-toxic i.e., they kill the microorganism responsible for the degradation and are recalcitrant in nature. Advanced oxidation process (AOP) is a class of oxidation techniques where hydroxyl radicals are employed for oxidation of pollutants. AOPs have the ability to totally mineralise the organic pollutants to CO2 and water. Different methods are employed for the generation of hydroxyl radicals in AOP systems. Acetamiprid is a neonicotinoid insecticide widely used to control sucking type insects on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, ornamental flowers. It is now recommended as a substitute for organophosphorous pesticides. Since its use is increasing, its presence is increasingly found in the environment. It has high water solubility and is not easily biodegradable. It has the potential to pollute surface and ground waters. Here, the use of AOPs for the removal of acetamiprid from wastewater has been investigated. Five methods were selected for the study based on literature survey and preliminary experiments conducted. Fenton process, UV treatment, UV/ H2O2 process, photo-Fenton and photocatalysis using TiO2 were selected for study. Undoped TiO2 and TiO2 doped with Cu and Fe were prepared by sol-gel method. Characterisation of the prepared catalysts was done by X-ray diffraction, scanning electron microscope, differential thermal analysis and thermogravimetric analysis. Influence of major operating parameters on the removal of acetamiprid has been investigated. All the experiments were designed using central compoiste design (CCD) of response surface methodology (RSM). Model equations were developed for Fenton, UV/ H2O2, photo-Fenton and photocatalysis for predicting acetamiprid removal and total organic carbon (TOC) removal for different operating conditions. Quality of the models were analysed by statistical methods. Experimental validations were also done to confirm the quality of the models. Optimum conditions obtained by experiment were verified with that obtained using response optimiser. Fenton Process is the simplest and oldest AOP where hydrogen peroxide and iron are employed for the generation of hydroxyl radicals. Influence of H2O2 and Fe2+ on the acetamiprid removal and TOC removal by Fenton process were investigated and it was found that removal increases with increase in H2O2 and Fe2+ concentration. At an initial concentration of 50 mg/L acetamiprid, 200 mg/L H2O2 and 20 mg/L Fe2+ at pH 3 was found to be optimum for acetamiprid removal. For UV treatment effect of pH was studied and it was found that pH has not much effect on the removal rate. Addition of H2O2 to UV process increased the removal rate because of the hydroxyl radical formation due to photolyis of H2O2. An H2O2 concentration of 110 mg/L at pH 6 was found to be optimum for acetamiprid removal. With photo-Fenton drastic reduction in the treatment time was observed with 10 times reduction in the amount of reagents required. H2O2 concentration of 20 mg/L and Fe2+ concentration of 2 mg/L was found to be optimum at pH 3. With TiO2 photocatalysis improvement in the removal rate was noticed compared to UV treatment. Effect of Cu and Fe doping on the photocatalytic activity under UV light was studied and it was observed that Cu doping enhanced the removal rate slightly while Fe doping has decreased the removal rate. Maximum acetamiprid removal was observed for an optimum catalyst loading of 1000 mg/L and Cu concentration of 1 wt%. It was noticed that mineralisation efficiency of the processes is low compared to acetamiprid removal efficiency. This may be due to the presence of stable intermediate compounds formed during degradation Kinetic studies were conducted for all the treatment processes and it was found that all processes follow pseudo-first order kinetics. Kinetic constants were found out from the experimental data for all the processes and half lives were calculated. The rate of reaction was in the order, photo- Fenton>UV/ H2O2>Fenton> TiO2 photocatalysis>UV. Operating cost was calculated for the processes and it was found that photo-Fenton removes the acetamiprid at lowest operating cost in lesser time. A kinetic model was developed for photo-Fenton process using the elementary reaction data and mass balance equations for the species involved in the process. Variation of acetamiprid concentration with time for different H2O2 and Fe2+ concentration at pH 3 can be found out using this model. The model was validated by comparing the simulated concentration profiles with that obtained from experiments. This study established the viability of the selected AOPs for the removal of acetamiprid from wastewater. Of the studied AOPs photo- Fenton gives the highest removal efficiency with lowest operating cost within shortest time.
Resumo:
Analysis by reduction is a linguistically motivated method for checking correctness of a sentence. It can be modelled by restarting automata. In this paper we propose a method for learning restarting automata which are strictly locally testable (SLT-R-automata). The method is based on the concept of identification in the limit from positive examples only. Also we characterize the class of languages accepted by SLT-R-automata with respect to the Chomsky hierarchy.
Resumo:
Wir entwickeln die Starkfeldnäherung für die Erzeugung hoher Harmonischer in Wasserstoffmolekülen, wobei die Vibrationsbewegung berücksichtigt wird, sowie die laserinduzierte Kopplung zwischen den beiden untersten Born-Oppenheimer-Zuständen im Molekülion, das durch die anfängliche Ionisation des Moleküls erzeugt wird. Wir zeigen, dass die Kopplung bei längeren Laserwellenlängen (≈ 2 μm) wichtig wird und zu einer Reduzierung der Erzeugung von Harmonischen führt, sowie zu einer Änderung des Verhältnisses von Harmonischen in verschiedenen Isotopen. ----------------------------------------------------------------------- We develop the strong-field approximation for high-order harmonic generation in hydrogen molecules, including the vibrational motion and the laser-induced coupling of the lowest two Born-Oppenheimer states in the molecular ion that is created by the initial ionization of the molecule. We show that the field dressing becomes important at long laser wavelengths (≈ 2 μm), leading to an overall reduction of harmonic generation and modifying the ratio of harmonic signals from different isotopes.
Resumo:
The principal objective of this paper is to develop a methodology for the formulation of a master plan for renewable energy based electricity generation in The Gambia, Africa. Such a master plan aims to develop and promote renewable sources of energy as an alternative to conventional forms of energy for generating electricity in the country. A tailor-made methodology for the preparation of a 20-year renewable energy master plan focussed on electricity generation is proposed in order to be followed and verified throughout the present dissertation, as it is applied for The Gambia. The main input data for the proposed master plan are (i) energy demand analysis and forecast over 20 years and (ii) resource assessment for different renewable energy alternatives including their related power supply options. The energy demand forecast is based on a mix between Top-Down and Bottom-Up methodologies. The results are important data for future requirements of (primary) energy sources. The electricity forecast is separated in projections at sent-out level and at end-user level. On the supply side, Solar, Wind and Biomass, as sources of energy, are investigated in terms of technical potential and economic benefits for The Gambia. Other criteria i.e. environmental and social are not considered in the evaluation. Diverse supply options are proposed and technically designed based on the assessed renewable energy potential. This process includes the evaluation of the different available conversion technologies and finalizes with the dimensioning of power supply solutions, taking into consideration technologies which are applicable and appropriate under the special conditions of The Gambia. The balance of these two input data (demand and supply) gives a quantitative indication of the substitution potential of renewable energy generation alternatives in primarily fossil-fuel-based electricity generation systems, as well as fuel savings due to the deployment of renewable resources. Afterwards, the identified renewable energy supply options are ranked according to the outcomes of an economic analysis. Based on this ranking, and other considerations, a 20-year investment plan, broken down into five-year investment periods, is prepared and consists of individual renewable energy projects for electricity generation. These projects included basically on-grid renewable energy applications. Finally, a priority project from the master plan portfolio is selected for further deeper analysis. Since solar PV is the most relevant proposed technology, a PV power plant integrated to the fossil-fuel powered main electrical system in The Gambia is considered as priority project. This project is analysed by economic competitiveness under the current conditions in addition to sensitivity analysis with regard to oil and new-technology market conditions in the future.
Resumo:
Urban and peri-urban agriculture (UPA) contributes to food security, serves as an opportunity for income generation, and provides recreational services to urban citizens. With a population of 21 Million people, of which 60 % live in slums, UPA activities can play a crucial role in supporting people’s livelihoods in Mumbai Metropolitan Region (MMR). This study was conducted to characterize the railway gardens, determine their role in UPA production, and assess potential risks. It comprises a baseline survey among 38 railway gardeners across MMR characterized by different demographic, socio-economic, migratory, and labour characteristics. Soil, irrigation water, and plant samples were analyzed for nutrients, heavy metals, and microbial load. All the railway gardeners practiced agriculture as a primary source of income and cultivated seasonal vegetables such as lady’s finger (Abelmoschus esculentus L. Moench), spinach (Spinacia oleracea L.), red amaranth (Amaranthus cruentus L.), and white radish (Raphanus sativus var. longipinnatus) which were irrigated with waste water. This irrigation water was loaded with 7–28 mg N l^(−1), 0.3–7 mg P l^(−1), and 8–32 mg K l^(−1), but also contained heavy metals such as lead (0.02–0.06 mg Pb l^(−1)), cadmium (0.03–0.17 mg Cd l^(−1)), mercury (0.001–0.005 mg Hg l^(−1)), and pathogens such as Escherichia coli (1,100 most probable number per 100 ml). Levels of heavy metals exceeded the critical thresholds in surface soils (Cr, Ni, and Sr) and produce (Pb, Cd, and Sr). The railway garden production systems can substantially foster employment and reduce economic deprivation of urban poor particularly slum dwellers and migrant people. However this production system may also cause possible health risks to producers and consumers.
Resumo:
This thesis addresses the problem of categorizing natural objects. To provide a criteria for categorization we propose that the purpose of a categorization is to support the inference of unobserved properties of objects from the observed properties. Because no such set of categories can be constructed in an arbitrary world, we present the Principle of Natural Modes as a claim about the structure of the world. We first define an evaluation function that measures how well a set of categories supports the inference goals of the observer. Entropy measures for property uncertainty and category uncertainty are combined through a free parameter that reflects the goals of the observer. Natural categorizations are shown to be those that are stable with respect to this free parameter. The evaluation function is tested in the domain of leaves and is found to be sensitive to the structure of the natural categories corresponding to the different species. We next develop a categorization paradigm that utilizes the categorization evaluation function in recovering natural categories. A statistical hypothesis generation algorithm is presented that is shown to be an effective categorization procedure. Examples drawn from several natural domains are presented, including data known to be a difficult test case for numerical categorization techniques. We next extend the categorization paradigm such that multiple levels of natural categories are recovered; by means of recursively invoking the categorization procedure both the genera and species are recovered in a population of anaerobic bacteria. Finally, a method is presented for evaluating the utility of features in recovering natural categories. This method also provides a mechanism for determining which features are constrained by the different processes present in a multiple modal world.
Resumo:
With the development of high-level languages for new computer architectures comes the need for appropriate debugging tools as well. One method for meeting this need would be to develop, from scratch, a symbolic debugger with the introduction of each new language implementation for any given architecture. This, however, seems to require unnecessary duplication of effort among developers. This paper describes Maygen, a "debugger generation system," designed to efficiently provide the desired language-dependent and architecture-dependent debuggers. A prototype of the Maygen system has been implemented and is able to handle the semantically different languages of C and OPAL.
Resumo:
There are many learning problems for which the examples given by the teacher are ambiguously labeled. In this thesis, we will examine one framework of learning from ambiguous examples known as Multiple-Instance learning. Each example is a bag, consisting of any number of instances. A bag is labeled negative if all instances in it are negative. A bag is labeled positive if at least one instance in it is positive. Because the instances themselves are not labeled, each positive bag is an ambiguous example. We would like to learn a concept which will correctly classify unseen bags. We have developed a measure called Diverse Density and algorithms for learning from multiple-instance examples. We have applied these techniques to problems in drug design, stock prediction, and image database retrieval. These serve as examples of how to translate the ambiguity in the application domain into bags, as well as successful examples of applying Diverse Density techniques.
Resumo:
This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object localization and recognition with the deeper developmental machinery required to forge those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little. What the robot starts with is a direct solution to achieving figure/ground separation: it simply 'pokes around' in a region of visual ambiguity and watches what happens. If the arm passes through an area, that area is recognized as free space. If the arm collides with an object, causing it to move, the robot can use that motion to segment the object from the background. Once the robot can acquire reliable segmented views of objects, it learns from them, and from then on recognizes and segments those objects without further contact. Both low-level and high-level visual features can also be learned in this way, and examples are presented for both: orientation detection and affordance recognition, respectively. The motivation for this work is simple. Training on large corpora of annotated real-world data has proven crucial for creating robust solutions to perceptual problems such as speech recognition and face detection. But the powerful tools used during training of such systems are typically stripped away at deployment. Ideally they should remain, particularly for unstable tasks such as object detection, where the set of objects needed in a task tomorrow might be different from the set of objects needed today. The key limiting factor is access to training data, but as this thesis shows, that need not be a problem on a robotic platform that can actively probe its environment, and carry out experiments to resolve ambiguity. This work is an instance of a general approach to learning a new perceptual judgment: find special situations in which the perceptual judgment is easy and study these situations to find correlated features that can be observed more generally.
Resumo:
Two contrasting case studies of sediment and detrital mineral composition are investigated in order to outline interactions between chemical composition and grain size. Modern glacial sediments exhibit a strong dependence of the two parameters due to the preferential enrichment of mafic minerals, especially biotite, in the fine-grained fractions. On the other hand, the composition of detrital heavy minerals (here: rutile) appears to be not systematically related to grain-size, but is strongly controlled by location, i.e. the petrology of the source rocks of detrital grains. This supports the use of rutile as a well-suited tracer mineral for provenance studies. The results further suggest that (i) interpretations derived from whole-rock sediment geochemistry should be flanked by grain-size observations, and (ii) a more sound statistical evaluation of these interactions require the development of new tailor-made statistical tools to deal with such so-called two-way compositions
Resumo:
Research carried out in several Anglo-Saxon countries shows that many undergraduates identify oral sex and anal sex as examples of abstinent behaviour, while many others consider kissing and masturbation as examples of having sex. The objective of this research was to investigate whether a sample of Spanish students gave similar replies. Seven hundred and fifty undergraduates (92% aged under 26, 67.6% women) produced examples or definitions of the term ‘abstinence’. Spanish students made similar errors to those observed in the Anglo-Saxon samples, in that behaviours that were abstinent from a preventive point of view (masturbating and sex without penetration) were not considered as such, while a number of students reported oral sex as abstinent behaviour. The results suggest that the information on risky and preventive sexual behaviour should cease to use ambiguous or euphemistic expressions and use vocabulary that is clear and comprehensible to everyone
Resumo:
Some examples from the book. Connolly, T. M. and C. E. Begg (2005). Database systems : a practical approach to design, implementation, and management. Harlow, Essex, England ; New York, Addison-Wesley.
Resumo:
Speaker(s): Prof. Steffen Staab Organiser: Dr Tim Chown Time: 23/05/2014 10:30-11:30 Location: B53/4025 Abstract The Web is constructed based on our experiences in a multitude of modalities: text, networks, images, physical locations are some examples. Understanding the Web requires from us that we can model these modalities as they appear on the Web. In this talk I will show some examples of how we model text, hyperlink networks and physical-social systems in order to improve our understanding and our use of the Web.
Resumo:
Title: Data-Driven Text Generation using Neural Networks Speaker: Pavlos Vougiouklis, University of Southampton Abstract: Recent work on neural networks shows their great potential at tackling a wide variety of Natural Language Processing (NLP) tasks. This talk will focus on the Natural Language Generation (NLG) problem and, more specifically, on the extend to which neural network language models could be employed for context-sensitive and data-driven text generation. In addition, a neural network architecture for response generation in social media along with the training methods that enable it to capture contextual information and effectively participate in public conversations will be discussed. Speaker Bio: Pavlos Vougiouklis obtained his 5-year Diploma in Electrical and Computer Engineering from the Aristotle University of Thessaloniki in 2013. He was awarded an MSc degree in Software Engineering from the University of Southampton in 2014. In 2015, he joined the Web and Internet Science (WAIS) research group of the University of Southampton and he is currently working towards the acquisition of his PhD degree in the field of Neural Network Approaches for Natural Language Processing. Title: Provenance is Complicated and Boring — Is there a solution? Speaker: Darren Richardson, University of Southampton Abstract: Paper trails, auditing, and accountability — arguably not the sexiest terms in computer science. But then you discover that you've possibly been eating horse-meat, and the importance of provenance becomes almost palpable. Having accepted that we should be creating provenance-enabled systems, the challenge of then communicating that provenance to casual users is not trivial: users should not have to have a detailed working knowledge of your system, and they certainly shouldn't be expected to understand the data model. So how, then, do you give users an insight into the provenance, without having to build a bespoke system for each and every different provenance installation? Speaker Bio: Darren is a final year Computer Science PhD student. He completed his undergraduate degree in Electronic Engineering at Southampton in 2012.
Resumo:
The incidence of diabetic neuropathy increases with the duration of diabetes and the degree of hyperglycaemia. Pain is one of the most common and incapacitating symptoms of diabetic neuropathy and its pharmacological control is complex. The effectiveness of antidepressive agents has been described in different types of neuropathic pain, but their effectiveness, when used as analgesics in painful diabetic neuropathy, still remains controversial. Objective: To review the possible role of new-generation antidepressive agents in the treatment of pain in diabetic peripheral neuropathy. This work has thus consisted of a meta-analysis for determining which antidepressive agent had the best analgesic potential in managing pain in patients suffering from painful diabetic neuropathy. Methods: This search covered the Cochrane, MEDLINE, EMBASE and LILACS databases, between January 2000 and August 2007. The following information was obtained from each article: criteria for diagnosing diabetic neuropathy, patients' age average, antidepressant drug received and dose, sample size, duration of the disease and treatment follow-up, outcome measurement, evaluation of pain and rescue medication. Results: A combined RR: 1.67 (95% CI 1.38 - 2.02) was obtained; this result indicated that the antidepressive agent duloxetine, was effective for controlling pain in diabetic neuropathy. The corresponding NNT for Duloxetine was established, according to our interests; NNT = 6 (95% CI 5- 8) for achieving greater than 50% analgesia in patients suffering from painful diabetic neuropathy. Discussion: Antidepressive agents are frequently employed in the specific case of diabetic neuropathy; their analgesic benefit has been demonstrated.