922 resultados para Generalized Linear Model
Resumo:
Bone cell cultures were evaluated to determine if osteogenic cell populations at different skeletal sites in the horse are heterogeneous. Osteogenic cells were isolated from cortical and cancellous bone in vitro by an explant culture method. Subcultured cells were induced to differentiate into bone-forming osteoblasts. The osteoblast phenotype was confirmed by immunohistochemical testing for osteocalcin and substantiated by positive staining of cells for alkaline phosphatase and the matrix materials collagen and glycosaminoglycans. Bone nodules were stained by the von Kossa method and counted. The numbers of nodules produced from osteogenic cells harvested from different skeletal sites were compared with the use of a mixed linear model. On average, cortical bone sites yielded significantly greater numbers of nodules than did cancellous bone sites. Between cortical bone sites, there was no significant difference in nodule numbers. Among cancellous sites, the radial cancellous bone yielded significantly more nodules than did the tibial cancellous bone. Among appendicular skeletal sites, tibial metaphyseal bone yielded significantly fewer nodules than did all other long bone sites. This study detected evidence of heterogeneity of equine osteogenic cell populations at various skeletal sites. Further characterization of the dissimilarities is warranted to determine the potential role heterogeneity plays in differential rates of fracture healing between skeletal sites.
Resumo:
Results from the humid tropics of Australia demonstrate that diverse plantations can achieve greater productivity than monocultures. We found that increases in both the observed species number and the effective species richness were significantly related to increased levels of productivity as measured by stand basal area or mean individual tree basal area. Four of five plantation species were more productive in mixtures with other species than in monocultures, offering on average, a 55% increase in mean tree basal area. A general linear model suggests that species richness had a significant effect on mean individual tree basal area when environmental variables were included in the model. As monoculture plantations are currently the preferred reforestation method throughout the tropics these results suggest that significant productivity and ecological gains could be made if multi-species plantations are more broadly pursued. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Parkinson's disease (PD) is associated with disturbances in sentence processing, particularly for noncanonical sentences. The present study aimed to analyse sentence processing in PD patients and healthy control participants, using a word-by-word self-paced reading task and an auditory comprehension task. Both tasks consisted of subject relative (SR) and object relative (OR) sentences, with comprehension accuracy measured for each sentence type. For the self-paced reading task, reading times (RTs) were also recorded for the non-critical and critical processing regions of each sentence. Analysis of RTs using mixed linear model statistics revealed a delayed sensitivity to the critical processing region of OR sentences in the PD group. In addition, only the PD group demonstrated significantly poorer comprehension of OR sentences compared to SR sentences during an auditory comprehension task. These results may be consistent with slower lexical retrieval in PD, and its influence on the processing of noncanonical sentences. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Development data of eggs and pupae of Xyleborus fornicatus Eichh. (Coleoptera: Scolytidae), the shot-hole borer of tea in Sri Lanka, at constant temperatures were used to evaluate a linear and seven nonlinear models for insect development. Model evaluation was based on fit to data (residual sum of squares and coefficient of determination or coefficient of nonlinear regression), number of measurable parameters, the biological value of the fitted coefficients and accuracy in the estimation of thresholds. Of the nonlinear models, the Lactin model fitted experimental data well and along with the linear model, can be used to describe the temperature-dependent development of this species.
Resumo:
Background. Exercise therapy improves functional capacity in CHF, but selection and individualization of training would be helped by a simple non-invasive marker of peak VO2. Peak VO2 in these pts is difficult to predict without direct measurement, and LV ejection fraction is a poor predictor. Myocardial tissue velocities are less load-dependent, and may be predictive of the exercise response in CHF pts. We sought to use tissue velocity as a predictor of peak VO2 in CHF pts. Methods. Resting 2D-echocardiography and tissue Doppler imaging were performed in 182 CHF pts (159 male, age 62±10 years) before and after metabolic exercise testing. The majority of these patients (129, 71%) had an ischemic cardiomyopathy, with resting EF of 35±13% and a peak VO2 of 13.5±4.7 ml/kg/min. Results. Neither resting EF (r=0.15) nor peak EF (r=0.18, both p=NS) were correlated with peak VO2. However, peak VO2 correlated with peak systolic velocity in septal (Vss, r=0.31) and lateral walls (Vsl, r=0.26, both p=0.01). In a general linear model (r2 = 0.25), peak VO2 was calculated from the following equation: 9.6 + 0.68*Vss - 0.09*age + 0.06*maximum HR. This model proved to be a superior predictor of peak VO2 (r=0.51, p=0.01) than the standard prediction equations of Wasserman (r= -0.12, p=0.01). Conclusions. Resting tissue Doppler, age and maximum heart rate may be used to predict functional capacity in CHF patients. This may be of use in selecting and following the response to therapy, including for exercise training.
Resumo:
Achievement goal orientation represents an individual's general approach to an achievement situation, and has important implications for how individuals react to novel, challenging tasks. However, theorists such as Yeo and Neal (2004) have suggested that the effects of goal orientation may emerge over time. Bell and Kozlowski (2002) have further argued that these effects may be moderated by individual ability. The current study tested the dynamic effects of a new 2x2 model of goal orientation (mastery/performance x approach/avoidance) on performance on a simulated air traffic control (ATC) task, as moderated by dynamic spatial ability. One hundred and one first-year participants completed a self-report goal orientation measure and computerbased dynamic spatial ability test and performed 30 trials of an ATC task. Hypotheses were tested using a two-level hierarchical linear model. Mastery-approach orientation was positively related to task performance, although no interaction with ability was observed. Performance-avoidance orientation was negatively related to task performance; this association was weaker at high levels of ability. Theoretical and practical implications will be discussed.
Resumo:
We investigate the dependence of Bayesian error bars on the distribution of data in input space. For generalized linear regression models we derive an upper bound on the error bars which shows that, in the neighbourhood of the data points, the error bars are substantially reduced from their prior values. For regions of high data density we also show that the contribution to the output variance due to the uncertainty in the weights can exhibit an approximate inverse proportionality to the probability density. Empirical results support these conclusions.
Resumo:
It is well known that one of the obstacles to effective forecasting of exchange rates is heteroscedasticity (non-stationary conditional variance). The autoregressive conditional heteroscedastic (ARCH) model and its variants have been used to estimate a time dependent variance for many financial time series. However, such models are essentially linear in form and we can ask whether a non-linear model for variance can improve results just as non-linear models (such as neural networks) for the mean have done. In this paper we consider two neural network models for variance estimation. Mixture Density Networks (Bishop 1994, Nix and Weigend 1994) combine a Multi-Layer Perceptron (MLP) and a mixture model to estimate the conditional data density. They are trained using a maximum likelihood approach. However, it is known that maximum likelihood estimates are biased and lead to a systematic under-estimate of variance. More recently, a Bayesian approach to parameter estimation has been developed (Bishop and Qazaz 1996) that shows promise in removing the maximum likelihood bias. However, up to now, this model has not been used for time series prediction. Here we compare these algorithms with two other models to provide benchmark results: a linear model (from the ARIMA family), and a conventional neural network trained with a sum-of-squares error function (which estimates the conditional mean of the time series with a constant variance noise model). This comparison is carried out on daily exchange rate data for five currencies.
Resumo:
1. Pearson's correlation coefficient only tests whether the data fit a linear model. With large numbers of observations, quite small values of r become significant and the X variable may only account for a minute proportion of the variance in Y. Hence, the value of r squared should always be calculated and included in a discussion of the significance of r. 2. The use of r assumes that a bivariate normal distribution is present and this assumption should be examined prior to the study. If Pearson's r is not appropriate, then a non-parametric correlation coefficient such as Spearman's rs may be used. 3. A significant correlation should not be interpreted as indicating causation especially in observational studies in which there is a high probability that the two variables are correlated because of their mutual correlations with other variables. 4. In studies of measurement error, there are problems in using r as a test of reliability and the ‘intra-class correlation coefficient’ should be used as an alternative. A correlation test provides only limited information as to the relationship between two variables. Fitting a regression line to the data using the method known as ‘least square’ provides much more information and the methods of regression and their application in optometry will be discussed in the next article.
Resumo:
This study aims to explore the position of diffusion oriented support mechanisms in European Community (EC) innovation policy. With the shift from the traditional linear model towards an integrative approach to innovation, the role of diffusion of technologies and knowledge, achieved greater weight. This shift in both the thinking of academic experts, and of national policy makers, induced EC policy makers to appeal for similar changes in Community innovation policy. From the mid-1980s, the Commission of the European Communities, the key actor in EC policy making, thought to move its innovation policy away from the traditional science push approach. This study shows that in the implementation of programmes for research, technology and innovation, the traditional linear model is still dominant. The core research and technological development programmes still operate from a science push concept of innovation, mainly due to their pre-competitive nature. The case of SPRINT illustrates that policy programmes with an integrated innovation perspective can be successful at Community level. However the programme operates in a relatively isolated position from overall research and technological development policy. The case of BRITE-EURAM illustrates the difficulties of collaborative research programmes, the bulk of EC support mechanisms, to move away from the traditional model. The study shows how conflicting policy objectives arising from the different policy networks that shape EC policy making, in combination with a lack of co-ordination in those policy domains, hinder the emergence of the integrated approach. Consequently EC diffusion policy, implemented from the perspective of the linear model, will have a sub-optimal impact on the competitiveness of European industries.
Resumo:
This paper introduces a new mathematical method for improving the discrimination power of data envelopment analysis and to completely rank the efficient decision-making units (DMUs). Fuzzy concept is utilised. For this purpose, first all DMUs are evaluated with the CCR model. Thereafter, the resulted weights for each output are considered as fuzzy sets and are then converted to fuzzy numbers. The introduced model is a multi-objective linear model, endpoints of which are the highest and lowest of the weighted values. An added advantage of the model is its ability to handle the infeasibility situation sometimes faced by previously introduced models.
Resumo:
Sponsorship fit is frequently mentioned and empirically examined as a success factor of sponsorship. While sponsorship fit has been considered as a determinant of sponsorship success, little knowledge exists about the antecedents of sponsorship fit. In the present paper, individual and firm-level antecedents of sponsorship fit are examined in a single hierarchical linear model. Results show that sponsorship fit is influenced by the perception of benefits, the firm’s regional identification, sincerity, relatedness to the sponsored activity, and its dominance. On a partnership level, results show that contract length contributes to sponsorship fit while contract value is found to be unrelated.
Resumo:
Objectives: Recently, pattern recognition approaches have been used to classify patterns of brain activity elicited by sensory or cognitive processes. In the clinical context, these approaches have been mainly applied to classify groups of individuals based on structural magnetic resonance imaging (MRI) data. Only a few studies have applied similar methods to functional MRI (fMRI) data. Methods: We used a novel analytic framework to examine the extent to which unipolar and bipolar depressed individuals differed on discrimination between patterns of neural activity for happy and neutral faces. We used data from 18 currently depressed individuals with bipolar I disorder (BD) and 18 currently depressed individuals with recurrent unipolar depression (UD), matched on depression severity, age, and illness duration, and 18 age- and gender ratio-matched healthy comparison subjects (HC). fMRI data were analyzed using a general linear model and Gaussian process classifiers. Results: The accuracy for discriminating between patterns of neural activity for happy versus neutral faces overall was lower in both patient groups relative to HC. The predictive probabilities for intense and mild happy faces were higher in HC than in BD, and for mild happy faces were higher in HC than UD (all p < 0.001). Interestingly, the predictive probability for intense happy faces was significantly higher in UD than BD (p = 0.03). Conclusions: These results indicate that patterns of whole-brain neural activity to intense happy faces were significantly less distinct from those for neutral faces in BD than in either HC or UD. These findings indicate that pattern recognition approaches can be used to identify abnormal brain activity patterns in patient populations and have promising clinical utility as techniques that can help to discriminate between patients with different psychiatric illnesses.
Resumo:
This research investigates the interrelationship between service characteristics and switching costs and makes two contributions to the service retailing literature: (1) As a means of better understanding the effectiveness of switching costs, the study suggests a two-dimensional typology of switching costs, including internal and external switching costs and (2) it reveals that the effect of these switching costs on customer loyalty is contingent upon four service characteristics (the IHIP characteristics of service). We carried out a meta-analytic review of the literature on the switching costs-customer loyalty link and created a hierarchical linear model using a sample of 1,694 customers from 51 service industries. Results reveal that external switching costs have a stronger average effect on customer loyalty than do internal switching costs. Moreover, we find that IHIP characteristics moderate the links between switching costs and customer loyalty. Thus, the link between external switching costs and customer loyalty is weaker in industries higher in the four service characteristics (as compared to industries lower in these characteristics), while the opposite moderating effect of service characteristics for the internal switching costs-loyalty link is noted. © 2014 New York University.
Resumo:
We investigate the energy optimization (minimization) for amplified links. We show that using the using a well-established analytic nonlinear signal-to-noise ratio noise model that for a simple amplifier model there are very clear, fiber independent, amplifier gains which minimize the total energy requirement. With a generalized amplifier model we establish the spacing for the optimum power per bit as well as the nonlinear limited optimum power. An amplifier spacing corresponding to 13 dB gain is shown to be a suitable compromise for practical amplifiers operating at the optimum nonlinear power. © 2014 Optical Society of America.