866 resultados para Generalized Lebesgue Spaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the boundedness of Toeplitz operators $T_a$ with locally integrable symbols on Bergman spaces $A^p(\mathbb{D})$, $1 < p < \infty$. Our main result gives a sufficient condition for the boundedness of $T_a$ in terms of some ``averages'' (related to hyperbolic rectangles) of its symbol. If the averages satisfy an ${o}$-type condition on the boundary of $\mathbb{D}$, we show that the corresponding Toeplitz operator is compact on $A^p$. Both conditions coincide with the known necessary conditions in the case of nonnegative symbols and $p=2$. We also show that Toeplitz operators with symbols of vanishing mean oscillation are Fredholm on $A^p$ provided that the averages are bounded away from zero, and derive an index formula for these operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study Hankel operators on the weighted Fock spaces Fp. The boundedness and compactness of these operators are characterized in terms of BMO and VMO, respectively. Along the way, we also study Berezin transform and harmonic conjugates on the plane. Our results are analogous to Zhu's characterization of bounded and compact Hankel operators on Bergman spaces of the unit disk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. We prove that the vast majority of JC∗-triples satisfy the condition of universal reversibility. Our characterisation is that a JC∗-triple is universally reversible if and only if it has no triple homomorphisms onto Hilbert spaces of dimension greater than two nor onto spin factors of dimension greater than four. We establish corresponding characterisations in the cases of JW∗-triples and of TROs (regarded as JC∗-triples). We show that the distinct natural operator space structures on a universally reversible JC∗-triple E are in bijective correspondence with a distinguished class of ideals in its universal TRO, identify the Shilov boundaries of these operator spaces and prove that E has a unique natural operator space structure precisely when E contains no ideal isometric to a nonabelian TRO. We deduce some decomposition and completely contractive properties of triple homomorphisms on TROs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sufficient conditions are derived for the linear stability with respect to zonally symmetric perturbations of a steady zonal solution to the nonhydrostatic compressible Euler equations on an equatorial � plane, including a leading order representation of the Coriolis force terms due to the poleward component of the planetary rotation vector. A version of the energy–Casimir method of stability proof is applied: an invariant functional of the Euler equations linearized about the equilibrium zonal flow is found, and positive definiteness of the functional is shown to imply linear stability of the equilibrium. It is shown that an equilibrium is stable if the potential vorticity has the same sign as latitude and the Rayleigh centrifugal stability condition that absolute angular momentum increase toward the equator on surfaces of constant pressure is satisfied. The result generalizes earlier results for hydrostatic and incompressible systems and for systems that do not account for the nontraditional Coriolis force terms. The stability of particular equilibrium zonal velocity, entropy, and density fields is assessed. A notable case in which the effect of the nontraditional Coriolis force is decisive is the instability of an angular momentum profile that decreases away from the equator but is flatter than quadratic in latitude, despite its satisfying both the centrifugal and convective stability conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to show that the group SE(3) with an imposed Lie-Poisson structure can be used to determine the trajectory in a spatial frame of a rigid body in Euclidean space. Identical results for the trajectory are obtained in spherical and hyperbolic space by scaling the linear displacements appropriately since the influence of the moments of inertia on the trajectories tends to zero as the scaling factor increases. The semidirect product of the linear and rotational motions gives the trajectory from a body frame perspective. It is shown that this cannot be used to determine the trajectory in the spatial frame. The body frame trajectory is thus independent of the velocity coupling. In addition, it is shown that the analysis can be greatly simplified by aligning the axes of the spatial frame with the axis of symmetry which is unchanging for a natural system with no forces and rotation about an axis of symmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider in this paper the solvability of linear integral equations on the real line, in operator form (λ−K)φ=ψ, where and K is an integral operator. We impose conditions on the kernel, k, of K which ensure that K is bounded as an operator on . Let Xa denote the weighted space as |s|→∞}. Our first result is that if, additionally, |k(s,t)|⩽κ(s−t), with and κ(s)=O(|s|−b) as |s|→∞, for some b>1, then the spectrum of K is the same on Xa as on X, for 01. As an example where kernels of this latter form occur we discuss a boundary integral equation formulation of an impedance boundary value problem for the Helmholtz equation in a half-plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses concepts of space within the planning literature, the issues they give rise to and the gaps they reveal. It then introduces the notion of 'fractals' borrowed from complexity theory and illustrates how it unconsciously appears in planning practice. It then moves on to abstract the core dynamics through which fractals can be consciously applied and illustrates their working through a reinterpretation of the People's Planning Campaign of Kerala, India. Finally it highlights the key contribution of the fractal concept and the advantages that this conceptualisation brings to planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud-masks. Here, this is done over both land and ocean using night-time (infrared) imagery. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 87% and 48% for ocean and land, respectively using the Bayesian technique, compared to 74% and 39%, respectively for the threshold-based techniques associated with the validation dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a series of papers, Killworth and Blundell have proposed to study the effects of a background mean flow and topography on Rossby wave propagation by means of a generalized eigenvalue problem formulated in terms of the vertical velocity, obtained from a linearization of the primitive equations of motion. However, it has been known for a number of years that this eigenvalue problem contains an error, which Killworth was prevented from correcting himself by his unfortunate passing and whose correction is therefore taken up in this note. Here, the author shows in the context of quasigeostrophic (QG) theory that the error can ulti- mately be traced to the fact that the eigenvalue problem for the vertical velocity is fundamentally a non- linear one (the eigenvalue appears both in the numerator and denominator), unlike that for the pressure. The reason that this nonlinear term is lacking in the Killworth and Blundell theory comes from neglecting the depth dependence of a depth-dependent term. This nonlinear term is shown on idealized examples to alter significantly the Rossby wave dispersion relation in the high-wavenumber regime but is otherwise irrelevant in the long-wave limit, in which case the eigenvalue problems for the vertical velocity and pressure are both linear. In the general dispersive case, however, one should first solve the generalized eigenvalue problem for the pressure vertical structure and, if needed, diagnose the vertical velocity vertical structure from the latter.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Government initiatives in several developed and developing countries to roll-out smart meters call for research on the sustainability impacts of these devices. In principle smart meters bring about higher control over energy theft and lower consumption, but require a high level of engagement by end-users. An alternative consists of load controllers, which control the load according to pre-set parameters. To date, research has focused on the impacts of these two alternatives separately. This study compares the sustainability impacts of smart meters and load controllers in an occupied office building in Italy. The assessment is carried out on three different floors of the same building. Findings show that demand reductions associated with a smart meter device are 5.2% higher than demand reductions associated with the load controller.