995 resultados para Gaze imaging tracking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The purpose of this study was to compare myocardial blood flow (MBF) and myocardial flow reserve (MFR) estimates from rubidium-82 positron emission tomography ((82)Rb PET) data using 10 software packages (SPs) based on 8 tracer kinetic models. BACKGROUND: It is unknown how MBF and MFR values from existing SPs agree for (82)Rb PET. METHODS: Rest and stress (82)Rb PET scans of 48 patients with suspected or known coronary artery disease were analyzed in 10 centers. Each center used 1 of 10 SPs to analyze global and regional MBF using the different kinetic models implemented. Values were considered to agree if they simultaneously had an intraclass correlation coefficient >0.75 and a difference <20% of the median across all programs. RESULTS: The most common model evaluated was the Ottawa Heart Institute 1-tissue compartment model (OHI-1-TCM). MBF values from 7 of 8 SPs implementing this model agreed best. Values from 2 other models (alternative 1-TCM and Axially distributed) also agreed well, with occasional differences. The MBF results from other models (e.g., 2-TCM and retention) were less in agreement with values from OHI-1-TCM. CONCLUSIONS: SPs using the most common kinetic model-OHI-1-TCM-provided consistent results in measuring global and regional MBF values, suggesting that they may be used interchangeably to process data acquired with a common imaging protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review covers some of the contributions to date from cerebellar imaging studies performed at ultra-high magnetic fields. A short overview of the general advantages and drawbacks of the use of such high field systems for imaging is given. One of the biggest advantages of imaging at high magnetic fields is the improved spatial resolution, achievable thanks to the increased available signal-to-noise ratio. This high spatial resolution better matches the dimensions of the cerebellar substructures, allowing a better definition of such structures in the images. The implications of the use of high field systems is discussed for several imaging sequences and image contrast mechanisms. This review covers studies which were performed in vivo in both rodents and humans, with a special focus on studies that were directed towards the observation of the different cerebellar layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the past decade, PET and PET/CT have been widely studied for myocardial perfusion imaging. Several studies demonstrated the incremental value of PET for the diagnostic and prognostic assessment of patients with coronary artery disease. Moreover, PET allows for non-invasively quantifying myocardial blood flow and myocardial flow reserve, that both are recognized as surrogate marker of cardiac event free survival. By enabling the exploration of epicardial disease and the microvasculature, PET constitutes a unique tool to study pathophysiogical mechanisms leading to atherosclerosis genesis. The recent emergence of high-tech hybrid machines may even provide further incremental information about coronary function and morphology. By taking the best of each modality, a better assessment of patients with coronary artery disease is expected. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumors in non-Hodgkin lymphoma (NHL) patients are often proximal to the major blood vessels in the abdomen or neck. In external-beam radiotherapy, these tumors present a challenge because imaging resolution prevents the beam from being targeted to the tumor lesion without also irradiating the artery wall. This problem has led to potentially life-threatening delayed toxicity. Because radioimmunotherapy has resulted in long-term survival of NHL patients, we investigated whether the absorbed dose (AD) to the artery wall in radioimmunotherapy of NHL is of potential concern for delayed toxicity. SPECT resolution is not sufficient to enable dosimetric analysis of anatomic features of the thickness of the aortic wall. Therefore, we present a model of aortic wall toxicity based on data from 4 patients treated with (131)I-tositumomab. METHODS: Four NHL patients with periaortic tumors were administered pretherapeutic (131)I-tositumomab. Abdominal SPECT and whole-body planar images were obtained at 48, 72, and 144 h after tracer administration. Blood-pool activity concentrations were obtained from regions of interest drawn on the heart on the planar images. Tumor and blood activity concentrations, scaled to therapeutic administered activities-both standard and myeloablative-were input into a geometry and tracking model (GEANT, version 4) of the aorta. The simulated energy deposited in the arterial walls was collected and fitted, and the AD and biologic effective dose values to the aortic wall and tumors were obtained for standard therapeutic and hypothetical myeloablative administered activities. RESULTS: Arterial wall ADs from standard therapy were lower (0.6-3.7 Gy) than those typical from external-beam therapy, as were the tumor ADs (1.4-10.5 Gy). The ratios of tumor AD to arterial wall AD were greater for radioimmunotherapy by a factor of 1.9-4.0. For myeloablative therapy, artery wall ADs were in general less than those typical for external-beam therapy (9.4-11.4 Gy for 3 of 4 patients) but comparable for 1 patient (32.6 Gy). CONCLUSION: Blood vessel radiation dose can be estimated using the software package 3D-RD combined with GEANT modeling. The dosimetry analysis suggested that arterial wall toxicity is highly unlikely in standard dose radioimmunotherapy but should be considered a potential concern and limiting factor in myeloablative therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vivo fetal magnetic resonance imaging provides aunique approach for the study of early human braindevelopment [1]. In utero cerebral morphometry couldpotentially be used as a marker of the cerebralmaturation and help to distinguish between normal andabnormal development in ambiguous situations. However,this quantitative approach is a major challenge becauseof the movement of the fetus inside the amniotic cavity,the poor spatial resolution provided by very fast MRIsequences and the partial volume effect. Extensiveefforts are made to deal with the reconstruction ofhigh-resolution 3D fetal volumes based on severalacquisitions with lower resolution [2,3,4]. Frameworkswere developed for the segmentation of specific regionsof the fetal brain such as posterior fossa, brainstem orgerminal matrix [5,6], or for the entire brain tissue[7,8], applying the Expectation-Maximization MarkovRandom Field (EM-MRF) framework. However, many of theseprevious works focused on the young fetus (i.e. before 24weeks) and use anatomical atlas priors to segment thedifferent tissue or regions. As most of the gyraldevelopment takes place after the 24th week, acomprehensive and clinically meaningful study of thefetal brain should not dismiss the third trimester ofgestation. To cope with the rapidly changing appearanceof the developing brain, some authors proposed a dynamicatlas [8]. To our opinion, this approach however faces arisk of circularity: each brain will be analyzed /deformed using the template of its biological age,potentially biasing the effective developmental delay.Here, we expand our previous work [9] to proposepost-processing pipeline without prior that allow acomprehensive set of morphometric measurement devoted toclinical application. Data set & Methods: Prenatal MRimaging was performed with a 1-T system (GE MedicalSystems, Milwaukee) using single shot fast spin echo(ssFSE) sequences (TR 7000 ms, TE 180 ms, FOV 40 x 40 cm,slice thickness 5.4mm, in plane spatial resolution1.09mm). For each fetus, 6 axial volumes shifted by 1 mmwere acquired under motherâeuro?s sedation (about 1min pervolume). First, each volume is segmentedsemi-automatically using region-growing algorithms toextract fetal brain from surrounding maternal tissues.Inhomogeneity intensity correction [10] and linearintensity normalization are then performed. Brain tissues(CSF, GM and WM) are then segmented based on thelow-resolution volumes as presented in [9]. Ahigh-resolution image with isotropic voxel size of 1.09mm is created as proposed in [2] and using B-splines forthe scattered data interpolation [11]. Basal gangliasegmentation is performed using a levet setimplementation on the high-resolution volume [12]. Theresulting white matter image is then binarized and givenas an input in FreeSurfer software(http://surfer.nmr.mgh.harvard.edu) to providetopologically accurate three-dimensional reconstructionsof the fetal brain according to the local intensitygradient. References: [1] Guibaud, Prenatal Diagnosis29(4) (2009). [2] Rousseau, Acad. Rad. 13(9), 2006. [3]Jiang, IEEE TMI 2007. [4] Warfield IADB, MICCAI 2009. [5]Claude, IEEE Trans. Bio. Eng. 51(4) 2004. [6] Habas,MICCAI 2008. [7] Bertelsen, ISMRM 2009. [8] Habas,Neuroimage 53(2) 2010. [9] Bach Cuadra, IADB, MICCAI2009. [10] Styner, IEEE TMI 19(39 (2000). [11] Lee, IEEETrans. Visual. And Comp. Graph. 3(3), 1997. [12] BachCuadra, ISMRM 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical Impedance Tomography (EIT) is an imaging method which enables a volume conductivity map of a subject to be produced from multiple impedance measurements. It has the potential to become a portable non-invasive imaging technique of particular use in imaging brain function. Accurate numerical forward models may be used to improve image reconstruction but, until now, have employed an assumption of isotropic tissue conductivity. This may be expected to introduce inaccuracy, as body tissues, especially those such as white matter and the skull in head imaging, are highly anisotropic. The purpose of this study was, for the first time, to develop a method for incorporating anisotropy in a forward numerical model for EIT of the head and assess the resulting improvement in image quality in the case of linear reconstruction of one example of the human head. A realistic Finite Element Model (FEM) of an adult human head with segments for the scalp, skull, CSF, and brain was produced from a structural MRI. Anisotropy of the brain was estimated from a diffusion tensor-MRI of the same subject and anisotropy of the skull was approximated from the structural information. A method for incorporation of anisotropy in the forward model and its use in image reconstruction was produced. The improvement in reconstructed image quality was assessed in computer simulation by producing forward data, and then linear reconstruction using a sensitivity matrix approach. The mean boundary data difference between anisotropic and isotropic forward models for a reference conductivity was 50%. Use of the correct anisotropic FEM in image reconstruction, as opposed to an isotropic one, corrected an error of 24 mm in imaging a 10% conductivity decrease located in the hippocampus, improved localisation for conductivity changes deep in the brain and due to epilepsy by 4-17 mm, and, overall, led to a substantial improvement on image quality. This suggests that incorporation of anisotropy in numerical models used for image reconstruction is likely to improve EIT image quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Patients with magnetic resonance (MR)-negative focal epilepsy (MRN-E) have less favorable surgical outcomes (between 40% and 70%) compared to those in whom an MRI lesion guides the site of surgical intervention (60-90%). Patients with extratemporal MRN-E have the worst outcome (around 50% chance of seizure freedom). We studied whether electroencephalography (EEG) source imaging (ESI) of interictal epileptic activity can contribute to the identification of the epileptic focus in patients with normal MRI. METHODS: We carried out ESI in 10 operated patients with nonlesional MRI and a postsurgical follow-up of at least 1 year. Five of the 10 patients had extratemporal lobe epilepsy. Evaluation comprised surface and intracranial EEG monitoring of ictal and interictal events, structural MRI, [(18)F]fluorodeoxyglucose positron emission tomography (FDG-PET), ictal and interictal perfusion single photon emission computed tomography (SPECT) scans. Eight of the 10 patients also underwent intracranial monitoring. RESULTS: ESI correctly localized the epileptic focus within the resection margins in 8 of 10 patients, 9 of whom experienced favorable postsurgical outcomes. DISCUSSION: The results highlight the diagnostic value of ESI and encourage broadening its application to patients with MRN-E. If the surface EEG contains fairly localized spikes, ESI contributes to the presurgical decision process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usingof belt for high precision applications has become appropriate because of the rapid development in motor and drive technology as well as the implementation of timing belts in servo systems. Belt drive systems provide highspeed and acceleration, accurate and repeatable motion with high efficiency, long stroke lengths and low cost. Modeling of a linear belt-drive system and designing its position control are examined in this work. Friction phenomena and position dependent elasticity of the belt are analyzed. Computer simulated results show that the developed model is adequate. The PID control for accurate tracking control and accurate position control is designed and applied to the real test setup. Both the simulation and the experimental results demonstrate that the designed controller meets the specified performance specifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le présent travail a eu comme but la comparaison de la performance de deux méthodes d'imagerie diagnostique pour la détection de métastases hépatiques du mélanome uvéal : la tomographie d'émission par positons au F-18-fluorodésoxyglucose (TEP FDG) couplée à la tomodensitométrie (TDM) et l'imagerie par résonance magnétique (IRM). Dans cette étude rétrospective, nous avons analysé les données radiologiques de patients inclus dans une étude multicentrique randomisée de phase III de l'Uveal Melanoma Group of the European Organization for Research and Treatment of Cancer (EORTC). L'IRM s'est révélée nettement plus sensible que le FDG-PET/CT pour mettre en évidence les métastases hépatiques notamment de taille infra-centimétrique. Néanmoins, l'analyse des changements de l'accumulation du traceur métabolique par les métastases hépatiques au cours du traitement suggère la possibilité d'évaluer, de manière précoce, la réponse des métastases hépatiques à la chimiothérapie. Le nombre de cas étudiés est trop faible pour déterminer la précision et la valeur clinique d'une telle évaluation mais les résultats obtenus dans cette étude pilote justifient une étude plus étendue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential X-ray phase-contrast tomography (DPCT) refers to a class of promising methods for reconstructing the X-ray refractive index distribution of materials that present weak X-ray absorption contrast. The tomographic projection data in DPCT, from which an estimate of the refractive index distribution is reconstructed, correspond to one-dimensional (1D) derivatives of the two-dimensional (2D) Radon transform of the refractive index distribution. There is an important need for the development of iterative image reconstruction methods for DPCT that can yield useful images from few-view projection data, thereby mitigating the long data-acquisition times and large radiation doses associated with use of analytic reconstruction methods. In this work, we analyze the numerical and statistical properties of two classes of discrete imaging models that form the basis for iterative image reconstruction in DPCT. We also investigate the use of one of the models with a modern image reconstruction algorithm for performing few-view image reconstruction of a tissue specimen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les approches multimodales dans l'imagerie cérébrale non invasive sont de plus en plus considérées comme un outil indispensable pour la compréhension des différents aspects de la structure et de la fonction cérébrale. Grâce aux progrès des techniques d'acquisition des images de Resonance Magnetique et aux nouveaux outils pour le traitement des données, il est désormais possible de mesurer plusieurs paramètres sensibles aux différentes caractéristiques des tissues cérébraux. Ces progrès permettent, par exemple, d'étudier les substrats anatomiques qui sont à la base des processus cognitifs ou de discerner au niveau purement structurel les phénomènes dégénératifs et développementaux. Cette thèse met en évidence l'importance de l'utilisation d'une approche multimodale pour étudier les différents aspects de la dynamique cérébrale grâce à l'application de cette approche à deux études cliniques: l'évaluation structurelle et fonctionnelle des effets aigus du cannabis fumé chez des consommateurs réguliers et occasionnels, et l'évaluation de l'intégrité de la substance grise et blanche chez des jeunes porteurs de la prémutations du gène FMR1 à risque de développer le FXTAS (Fragile-X Tremor Ataxia Syndrome). Nous avons montré que chez les fumeurs occasionnels de cannabis, même à faible concentration du principal composant psychoactif (THC) dans le sang, la performance lors d'une tâche visuo-motrice est fortement diminuée, et qu'il y a des changements dans l'activité des trois réseaux cérébraux impliqués dans les processus cognitifs: le réseau de saillance, le réseau du contrôle exécutif, et le réseau actif par défaut (Default Mode). Les sujets ne sont pas en mesure de saisir les saillances dans l'environnement et de focaliser leur attention sur la tâche. L'augmentation de la réponse hémodynamique dans le cortex cingulaire antérieur suggère une augmentation de l'activité introspective. Une investigation des ef¬fets au niveau cérébral d'une exposition prolongée au cannabis, montre des changements persistants de la substance grise dans les régions associées à la mémoire et au traitement des émotions. Le niveau d'atrophie dans ces structures corrèle avec la consommation de cannabis au cours des trois mois précédant l'étude. Dans la deuxième étude, nous démontrons des altérations structurelles des décennies avant l'apparition du syndrome FXTAS chez des sujets jeunes, asymptomatiques, et porteurs de la prémutation du gène FMR1. Les modifications trouvées peuvent être liées à deux mécanismes différents. Les altérations dans le réseau moteur du cervelet et dans la fimbria de l'hippocampe, suggèrent un effet développemental de la prémutation. Elles incluent aussi une atrophie de la substance grise du lobule VI du cervelet et l'altération des propriétés tissulaires de la substance blanche des projections afférentes correspondantes aux pédoncules cérébelleux moyens. Les lésions diffuses de la substance blanche cérébrale peu¬vent être un marquer précoce du développement de la maladie, car elles sont liées à un phénomène dégénératif qui précède l'apparition des symptômes du FXTAS. - Multimodal brain imaging is becoming a leading tool for understanding different aspects of brain structure and function. Thanks to the advances in Magnetic Resonance imaging (MRI) acquisition schemes and data processing techniques, it is now possible to measure different parameters sensitive to different tissue characteristics. This allows for example to investigate anatomical substrates underlying cognitive processing, or to disentangle, at a pure structural level degeneration and developmental processes. This thesis highlights the importance of using a multimodal approach for investigating different aspects of brain dynamics by applying this approach to two clinical studies: functional and structural assessment of the acute effects of cannabis smoking in regular and occasional users, and grey and white matter assessment in young FMR1 premutation carriers at risk of developing FXTAS. We demonstrate that in occasional smokers cannabis smoking, even at low concentration of the main psychoactive component (THC) in the blood, strongly decrease subjects' performance on a visuo-motor tracking task, and globally alters the activity of the three brain networks involved in cognitive processing: the Salience, the Control Executive, and the Default Mode networks. Subjects are unable to capture saliences in the environment and to orient attention to the task; the increase in Hemodynamic Response in the Anterior Cingulate Cortex suggests an increase in self-oriented mental activity. A further investigation on long term exposure to cannabis, shows a persistent grey matter modification in brain regions associated with memory and affective processing. The degree of atrophy in these structures also correlates with the estimation of drug use in the three months prior the participation to the study. In the second study we demonstrate structural changes in young asymptomatic premutation carriers decades before the onset of FXTAS that might be related to two different mechanisms. Alteration of the cerebellar motor network and of the hippocampal fimbria/ fornix, may reflect a potential neurodevelopmental effect of the premutation. These include grey matter atrophy in lobule VI and modification of white matter tissue property in the corresponding afferent projections through the Middle Cerebellar Peduncles. Diffuse hemispheric white matter lesions that seem to appear closer to the onset of FXTAS and be related to a neurodegenerative phenomenon may mark the imminent onset of FXTAS.