896 resultados para GALAXY: HALO
Resumo:
The discovery almost three decades ago of non-nuclear, point-like X-ray sources with X-ray luminosities LX ≥ 3 × 1039 erg s−1 revolutionized the physics of black hole accretion. If of stellar origin, such Ultraluminous X-ray sources (ULXs) would have to accrete at super-Eddington rates in order to reach the observed high X-ray luminosities. Alternatively, ULXs could host sub-Eddington accreting intermediate-mass black holes, which are the long-time sought missing link between stellar and supermassive black holes and the possible seeds of the supermassive black holes that formed in the early Universe. The nature of ULXs can be better investigated in those cases for which a radio counterpart is detected. Radio observations of ULXs have revealed a wide variety of morphologies and source types, from compact and extended jets to radio nebulae and transient behaviours, providing the best observational evidence for the presence of an intermediate-mass black hole in some of them. The high sensitivity of the SKA will allow us to study the faintest ULX radio counterparts in the Local Universe as well as to detect new sources at much larger distances. It will thus perform a leap step in understanding ULXs, their accretion physics, and their possible role as seed black holes in supermassive black hole and galaxy growth.
Resumo:
Context. The Gaia-ESO Public Spectroscopic Survey is obtaining high-quality spectroscopy of some 100 000 Milky Way stars using the FLAMES spectrograph at the VLT, down to V = 19 mag, systematically covering all the main components of the Milky Way and providing the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. Observations of young open clusters, in particular, are giving new insights into their initial structure, kinematics, and their subsequent evolution. Aims. This paper describes the analysis of UVES and GIRAFFE spectra acquired in the fields of young clusters whose population includes pre-main sequence (PMS) stars. The analysis is applied to all stars in such fields, regardless of any prior information on membership, and provides fundamental stellar atmospheric parameters, elemental abundances, and PMS-specific parameters such as veiling, accretion, and chromospheric activity. Methods. When feasible, different methods were used to derive raw parameters (e.g. line equivalent widths) fundamental atmospheric parameters and derived parameters (e.g. abundances). To derive some of these parameters, we used methods that have been extensively used in the past and new ones developed in the context of the Gaia-ESO survey enterprise. The internal precision of these quantities was estimated by inter-comparing the results obtained by these different methods, while the accuracy was estimated by comparison with independent external data, such as effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. A validation procedure based on these comparisons was applied to discard spurious or doubtful results and produce recommended parameters. Specific strategies were implemented to resolve problems of fast rotation, accretion signatures, chromospheric activity, and veiling. Results. The analysis carried out on spectra acquired in young cluster fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. These include targets in the fields of the ρ Oph, Cha I, NGC 2264, γ Vel, and NGC 2547 clusters. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide stellar parameters with confidence for the much larger GIRAFFE sample. Precisions are estimated to be ≈120 K rms in Teff, ≈0.3 dex rms in log g, and ≈0.15 dex rms in [Fe/H] for the UVES and GIRAFFE setups.
Resumo:
Context. It appears that most (if not all) massive stars are born in multiple systems. At the same time, the most massive binaries are hard to find owing to their low numbers throughout the Galaxy and the implied large distances and extinctions. Aims. We want to study LS III +46 11, identified in this paper as a very massive binary; another nearby massive system, LS III +46 12; and the surrounding stellar cluster, Berkeley 90. Methods. Most of the data used in this paper are multi-epoch high S/N optical spectra, although we also use Lucky Imaging and archival photometry. The spectra are reduced with dedicated pipelines and processed with our own software, such as a spectroscopic-orbit code, CHORIZOS, and MGB. Results. LS III +46 11 is identified as a new very early O-type spectroscopic binary [O3.5 If* + O3.5 If*] and LS III +46 12 as another early O-type system [O4.5 V((f))]. We measure a 97.2-day period for LS III +46 11 and derive minimum masses of 38.80 ± 0.83 M⊙ and 35.60 ± 0.77 M⊙ for its two stars. We measure the extinction to both stars, estimate the distance, search for optical companions, and study the surrounding cluster. In doing so, a variable extinction is found as well as discrepant results for the distance. We discuss possible explanations and suggest that LS III +46 12 may be a hidden binary system where the companion is currently undetected.
Resumo:
We study the relationship between age, metallicity, and α-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset, i.e. the accuracy of stellar parameters and the selection effects that are caused by the photometric target preselection. We find that the colour and magnitude cuts in the survey suppress old metal-rich stars and young metal-poor stars. This suppression may be as high as 97% in some regions of the age-metallicity relationship. The dataset consists of 144 stars with a wide range of ages from 0.5 Gyr to 13.5 Gyr, Galactocentric distances from 6 kpcto 9.5 kpc, and vertical distances from the plane 0 < |Z| < 1.5 kpc. On this basis, we find that i) the observed age-metallicity relation is nearly flat in the range of ages between 0 Gyr and 8 Gyr; ii) at ages older than 9 Gyr, we see a decrease in [Fe/H] and a clear absence of metal-rich stars; this cannot be explained by the survey selection functions; iii) there is a significant scatter of [Fe/H] at any age; and iv) [Mg/Fe] increases with age, but the dispersion of [Mg/Fe] at ages >9 Gyr is not as small as advocated by some other studies. In agreement with earlier work, we find that radial abundance gradients change as a function of vertical distance from the plane. The [Mg/Fe] gradient steepens and becomes negative. In addition, we show that the inner disk is not only more α-rich compared to the outer disk, but also older, as traced independently by the ages and Mg abundances of stars.
Resumo:
Magnetars are neutron stars in which a strong magnetic field is the main energy source. About two dozens of magnetars, plus several candidates, are currently known in our Galaxy and in the Magellanic Clouds. They appear as highly variable X-ray sources and, in some cases, also as radio and/or optical pulsars. Their spin periods (2–12 s) and spin-down rates (∼10−13–10−10 s s−1) indicate external dipole fields of ∼1013−15 G, and there is evidence that even stronger magnetic fields are present inside the star and in non-dipolar magnetospheric components. Here we review the observed properties of the persistent emission from magnetars, discuss the main models proposed to explain the origin of their magnetic field and present recent developments in the study of their evolution and connection with other classes of neutron stars.
Resumo:
A large fraction of Gamma-ray bursts (GRBs) displays an X-ray plateau phase within <105 s from the prompt emission, proposed to be powered by the spin-down energy of a rapidly spinning newly born magnetar. In this work we use the properties of the Galactic neutron star population to constrain the GRB-magnetar scenario. We re-analyze the X-ray plateaus of all Swift GRBs with known redshift, between 2005 January and 2014 August. From the derived initial magnetic field distribution for the possible magnetars left behind by the GRBs, we study the evolution and properties of a simulated GRB-magnetar population using numerical simulations of magnetic field evolution, coupled with Monte Carlo simulations of Pulsar Population Synthesis in our Galaxy. We find that if the GRB X-ray plateaus are powered by the rotational energy of a newly formed magnetar, the current observational properties of the Galactic magnetar population are not compatible with being formed within the GRB scenario (regardless of the GRB type or rate at z = 0). Direct consequences would be that we should allow the existence of magnetars and "super-magnetars" having different progenitors, and that Type Ib/c SNe related to Long GRBs form systematically neutron stars with higher initial magnetic fields. We put an upper limit of ≤16 "super-magnetars" formed by a GRB in our Galaxy in the past Myr (at 99% c.l.). This limit is somewhat smaller than what is roughly expected from Long GRB rates, although the very large uncertainties do not allow us to draw strong conclusion in this respect.
Resumo:
Context. The young open cluster Dolidze 25, in the direction of the Galactic anticentre, has been attributed a very low metallicity, with typical abundances between −0.5 and −0.7 dex below solar. Aims. We intend to derive accurate cluster parameters and accurate stellar abundances for some of its members. Methods. We have obtained a large sample of intermediate- and high-resolution spectra for stars in and around Dolidze 25. We used the fastwind code to generate stellar atmosphere models to fit the observed spectra. We derive stellar parameters for a large number of OB stars in the area, and abundances of oxygen and silicon for a number of stars with spectral types around B0. Results. We measure low abundances in stars of Dolidze 25. For the three stars with spectral types around B0, we find 0.3 dex (Si) and 0.5 dex (O) below the values typical in the solar neighbourhood. These values, even though not as low as those given previously, confirm Dolidze 25 and the surrounding H ii region Sh2-284 as the most metal-poor star-forming environment known in the Milky Way. We derive a distance 4.5 ± 0.3 kpc to the cluster (rG ≈ 12.3 kpc). The cluster cannot be older than ~3 Myr, and likely is not much younger. One star in its immediate vicinity, sharing the same distance, has Si and O abundances at most 0.15 dex below solar. Conclusions. The low abundances measured in Dolidze 25 are compatible with currently accepted values for the slope of the Galactic metallicity gradient, if we take into account that variations of at least ±0.15 dex are observed at a given radius. The area traditionally identified as Dolidze 25 is only a small part of a much larger star-forming region that comprises the whole dust shell associated with Sh2-284 and very likely several other smaller H ii regions in its vicinity.
Resumo:
We report on the discovery of a new member of the magnetar class, SGR J1935+2154, and on its timing and spectral properties measured by an extensive observational campaign carried out between 2014 July and 2015 March with Chandra and XMM–Newton (11 pointings). We discovered the spin period of SGR J1935+2154 through the detection of coherent pulsations at a period of about 3.24 s. The magnetar is slowing down at a rate of P˙=1.43(1)×10−11 s s−1 and with a decreasing trend due to a negative P¨ of −3.5(7) × 10−19 s s−2. This implies a surface dipolar magnetic field strength of ∼2.2 × 1014 G, a characteristic age of about 3.6 kyr and a spin-down luminosity Lsd ∼1.7 × 1034 erg s−1. The source spectrum is well modelled by a blackbody with temperature of about 500 eV plus a power-law component with photon index of about 2. The source showed a moderate long-term variability, with a flux decay of about 25 per cent during the first four months since its discovery, and a re-brightening of the same amount during the second four months. The X-ray data were also used to study the source environment. In particular, we discovered a diffuse emission extending on spatial scales from about 1 arcsec up to at least 1 arcmin around SGR J1935+2154 both in Chandra and XMM–Newton data. This component is constant in flux (at least within uncertainties) and its spectrum is well modelled by a power-law spectrum steeper than that of the pulsar. Though a scattering halo origin seems to be more probable we cannot exclude that part, or all, of the diffuse emission is due to a pulsar wind nebula.
Resumo:
Fossil manganese nodules and encrustations from seamount' and basin' localities in the Transdanubian Central Mountains of Hungary are lithologically, mineralogically and chemically similar to some modern marine ferromanganese oxide deposits, and show no evidence of postdepositional changes other than cementation. Five groups of deposits were encountered: Fe/Mn nodules, encrusted shells, pavements, stains, and Fe oxide encrusted intraclasts, the first three of which are specific to the 'seamount' environment and the last to the basins'. Optical and electron microprobe investigation of the samples shows them to exhibit many similarities with modern ferromanganese oxide deposits, and that many of the nodules are surrounded by a halo of dispersed ferromanganese oxides, strongly suggesting that they continued to accrete metals through the pore waters of unlithified sediments for a period after burial. By contrast, pavements which appear to have grown on hardgrounds at the sea floor show little or no evidence of derivation of metals from underlying sediments. Geochemical investigations on the deposits show the seamount' varieties to be closer in composition to most modern nodules and crusts than the basin' varieties, and that the latter are essentially manganese and trace-element-poor ferruginous deposits. Nevertheless, all can be more or less compositionally equated with modern ferromanganese oxide deposits forming in marginal Atlantic environments, which would be in accord with the proposed depositional environment of the Transdanubian Central Mountains based on other evidence.
Resumo:
Mode of access: Internet.
Resumo:
Federal Aviation Administration, Atlantic City International Airport, N.J.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Federal Aviation Administration, Atlantic City International Airport, N.J.