942 resultados para Functional gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) mediates angiogenic activity in a variety of estrogen target tissues. To determine whether estrogen has a direct transcriptional effect on VEGF gene expression, we developed a model system by transiently transfecting human VEGF promoter-luciferase reporter constructs into primary human endometrial cells and into Ishikawa cells, derived from a well-differentiated human endometrial adenocarcinoma. In primary endometrial epithelial cells, treatment with 17β-estradiol (E2) resulted in a 3.8-fold increase in luciferase activity, whereas a 3.2-fold induction was demonstrated for stromal cells. Our Ishikawa cells had less than 100 functional estrogen receptors (ER)/cell and were therefore cotransfected with expression vectors encoding either the α- or the β-form of the human ER. In cells cotransfected with ERα, E2 induced 3.2-fold induction in VEGF-promoter luciferase activity. A 2.3-fold increase was observed in cells cotransfected with ERβ. Through specific deletions, the E2 response was restricted to a single 385-bp PvuII-SstI fragment in the 5′ flanking DNA. Cotransfection of this upstream region with a DNA binding domain ER mutant, or site-directed mutagenesis of a variant ERE within this fragment, resulted in the loss of the E2 response. Electromobility shift assays demonstrated that this same ERE sequence specifically binds estradiol-ER complexes. These studies demonstrate that E2-regulated VEGF gene transcription requires a variant ERE located 1.5 kb upstream from the transcriptional start site. Site-directed mutagenesis of this ERE abrogated E2-induced VEGF gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloning and sequencing of the upstream region of the gene of the CC chemokine HCC-1 led to the discovery of an adjacent gene coding for a CC chemokine that was named “HCC-2.” The two genes are separated by 12-kbp and reside in a head-to-tail orientation on chromosome 17. At variance with the genes for HCC-1 and other human CC chemokines, which have a three-exon-two-intron structure, the HCC-2 gene consists of four exons and three introns. Expression of HCC-2 and HCC-1 as studied by Northern analysis revealed, in addition to the regular, monocistronic mRNAs, a common, bicistronic transcript. In contrast to HCC-1, which is expressed constitutively in numerous human tissues, HCC-2 is expressed only in the gut and the liver. HCC-2 shares significant sequence homology with CKβ8 and the murine chemokines C10, CCF18/MRP-2, and macrophage inflammatory protein 1γ, which all contain six instead of four conserved cysteines. The two additional cysteines of HCC-2 form a third disulfide bond, which anchors the COOH-terminal domain to the core of the molecule. Highly purified recombinant HCC-2 was tested on neutrophils, eosinophils, monocytes, and lymphocytes and was found to exhibit marked functional similarities to macrophage inflammatory protein 1α. It is a potent chemoattractant and inducer of enzyme release in monocytes and a moderately active attractant for eosinophils. Desensitization studies indicate that HCC-2 acts mainly via CC chemokine receptor CCR1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IL-10-related T cell-derived inducible factor (IL-TIF or IL-21) is a new cytokine structurally related to IL-10 and originally identified in the mouse as a gene induced by IL-9 in T cells and mast cells. Here, we report the cloning of the human IL-TIF cDNA, which shares 79% amino acid identity with mouse IL-TIF and 25% identity with human IL-10. Recombinant human IL-TIF was found to activate signal transducer and activator of transcription factors-1 and -3 in several hepatoma cell lines. IL-TIF stimulation of HepG2 human hepatoma cells up-regulated the production of acute phase reactants such as serum amyloid A, α1-antichymotrypsin, and haptoglobin. Although IL-10 and IL-TIF have distinct activities, antibodies directed against the β chain of the IL-10 receptor blocked the induction of acute phase reactants by IL-TIF, indicating that this chain is a common component of the IL-10 and IL-TIF receptors. Similar acute phase reactant induction was observed in mouse liver upon IL-TIF injection, and IL-TIF expression was found to be rapidly increased after lipopolysaccharide (LPS) injection, suggesting that this cytokine contributes to the inflammatory response in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In plants, sugar feedback regulation provides a mechanism for control of carbohydrate allocation and utilization among tissues and organs. The sugar repression of α-amylase gene expression in rice provides an ideal model for studying the mechanism of sugar feedback regulation. We have shown previously that sugar repression of α-amylase gene expression in rice suspension cells involves control of both transcription rate and mRNA stability. The α-amylase mRNA is significantly more stable in sucrose-starved cells than in sucrose-provided cells. To elucidate the mechanism of sugar-dependent mRNA turnover, we have examined the effect of αAmy3 3′ untranslated region (UTR) on mRNA stability by functional analyses in transformed rice suspension cells. We found that the entire αAmy3 3′ UTR and two of its subdomains can independently mediate sugar-dependent repression of reporter mRNA accumulation. Analysis of reporter mRNA half-lives demonstrated that the entire αAmy3 3′ UTR and the two subdomains each functioned as a sugar-dependent destabilizing determinant in the turnover of mRNA. Nuclear run-on transcription analysis further confirmed that the αAmy3 3′ UTR and the two subdomains did not affect the transcription rate of promoter. The identification of sequence elements in the α-amylase mRNA that dictate the differential stability has very important implications for the study of sugar-dependent mRNA decay mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wilson disease is an autosomal recessive disorder of hepatic copper metabolism caused by mutations in a gene encoding a copper-transporting P-type ATPase. To elucidate the function of the Wilson protein, wild-type and mutant Wilson cDNAs were expressed in a Menkes copper transporter-deficient mottled fibroblast cell line defective in copper export. Expression of the wild-type cDNA demonstrated trans-Golgi network localization and copper-dependent trafficking of the Wilson protein identical to previous observations for the endogenously expressed protein in hepatocytes. Furthermore, expression of the Wilson cDNA rescued the mottled phenotype as evidenced by a reduction in copper accumulation and restoration of cell viability. In contrast, expression of an H1069Q mutant Wilson cDNA did not rescue the mottled phenotype, and immunofluorescence studies showed that this mutant Wilson protein was localized in the endoplasmic reticulum. Consistent with these findings, pulse–chase analysis demonstrated a 5-fold decrease in the half-life of the H1069Q mutant as compared with the wild-type protein. Maintenance of these transfected cell lines at 28°C resulted in localization of the H1069Q protein in the trans-Golgi network, suggesting that a temperature-sensitive defect in protein folding followed by degradation constitutes the molecular basis of Wilson disease in patients harboring the H1069Q mutation. Taken together, these studies describe a tractable expression system for elucidating the function and localization of the copper-transporting ATPases in mammalian cells and provide compelling evidence that the Wilson protein can functionally substitute for the Menkes protein, supporting the concept that these proteins use common biochemical mechanisms to effect cellular copper homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germline defects in the tuberous sclerosis 2 (TSC2) tumor suppressor gene predispose humans and rats to benign and malignant lesions in a variety of tissues. The brain is among the most profoundly affected organs in tuberous sclerosis (TSC) patients and is the site of development of the cortical tubers for which the hereditary syndrome is named. A spontaneous germline inactivation of the Tsc2 locus has been described in an animal model, the Eker rat. We report that the homozygous state of this mutation (Tsc2Ek/Ek) was lethal in mid-gestation (the equivalent of mouse E9.5–E13.5), when Tsc2 mRNA was highly expressed in embryonic neuroepithelium. During this period homozygous mutant Eker embryos lacking functional Tsc2 gene product, tuberin, displayed dysraphia and papillary overgrowth of the neuroepithelium, indicating that loss of tuberin disrupted the normal development of this tissue. Interestingly, there was significant intraspecies variability in the penetrance of cranial abnormalities in mutant embryos: the Long–Evans strain Tsc2Ek/Ek embryos displayed these defects whereas the Fisher 344 homozygous mutant embryos had normal-appearing neuroepithelium. Taken together, our data indicate that the Tsc2 gene participates in normal brain development and suggest the inactivation of this gene may have similar functional consequences in both mature and embryonic brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant disease resistance (R) genes confer race-specific resistance to pathogens and are genetically defined on the basis of intra-specific functional polymorphism. Little is known about the evolutionary mechanisms that generate this polymorphism. Most R loci examined to date contain alternate alleles and/or linked homologs even in disease-susceptible plant genotypes. In contrast, the resistance to Pseudomonas syringae pathovar maculicola (RPM1) bacterial resistance gene is completely absent (rpm1-null) in 5/5 Arabidopsis thaliana accessions that lack RPM1 function. The rpm1-null locus contains a 98-bp segment of unknown origin in place of the RPM1 gene. We undertook comparative mapping of RPM1 and flanking genes in Brassica napus to determine the ancestral state of the RPM1 locus. We cloned two B. napus RPM1 homologs encoding hypothetical proteins with ≈81% amino acid identity to Arabidopsis RPM1. Collinearity of genes flanking RPM1 is conserved between B. napus and Arabidopsis. Surprisingly, we found four additional B. napus loci in which the flanking marker synteny is maintained but RPM1 is absent. These B. napus rpm1-null loci have no detectable nucleotide similarity to the Arabidopsis rpm1-null allele. We conclude that RPM1 evolved before the divergence of the Brassicaceae and has been deleted independently in the Brassica and Arabidopsis lineages. These results suggest that functional polymorphism at R gene loci can arise from gene deletions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiomyopathy (CM) is a primary degenerative disease of myocardium and is traditionally categorized into hypertrophic and dilated CMs (HCM and DCM) according to its gross appearance. Cardiomyopathic hamster (CM hamster), a representative model of human hereditary CM, has HCM and DCM inbred sublines, both of which descend from the same ancestor. Herein we show that both HCM and DCM hamsters share a common defect in a gene for δ-sarcoglycan (δ-SG), the functional role of which is yet to be characterized. A breakpoint causing genomic deletion was found to be located at 6.1 kb 5′ upstream of the second exon of δ-SG gene, and its 5′ upstream region of more than 27.4 kb, including the authentic first exon of δ-SG gene, was deleted. This deletion included the major transcription initiation site, resulting in a deficiency of δ-SG transcripts with the consequent loss of δ-SG protein in all the CM hamsters, despite the fact that the protein coding region of δ-SG starting from the second exon was conserved in all the CM hamsters. We elucidated the molecular interaction of dystrophin-associated glycoproteins including δ-SG, by using an in vitro pull-down study and ligand overlay assay, which indicates the functional role of δ-SG in stabilizing sarcolemma. The present study not only identifies CM hamster as a valuable animal model for studying the function of δ-SG in vivo but also provides a genetic target for diagnosis and treatment of human CM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early steps in the biosynthesis of Taxol involve the cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene followed by cytochrome P450-mediated hydroxylation at C5, acetylation of this intermediate, and a second cytochrome P450-dependent hydroxylation at C10 to yield taxadien-5α-acetoxy-10β-ol. Subsequent steps of the pathway involve additional cytochrome P450 catalyzed oxygenations and CoA-dependent acylations. The limited feasibility of reverse genetic cloning of cytochrome P450 oxygenases led to the use of Taxus cell cultures induced for Taxol production and the development of an approach based on differential display of mRNA-reverse transcription-PCR, which ultimately provided full-length forms of 13 unique but closely related cytochrome P450 sequences. Functional expression of these enzymes in yeast was monitored by in situ spectrophotometry coupled to in vivo screening of oxygenase activity by feeding taxoid substrates. This strategy yielded a family of taxoid-metabolizing enzymes and revealed the taxane 10β-hydroxylase as a 1494-bp cDNA that encodes a 498-residue cytochrome P450 capable of transforming taxadienyl acetate to the 10β-hydroxy derivative; the identity of this latter pathway intermediate was confirmed by chromatographic and spectrometric means. The 10β-hydroxylase represents the initial cytochrome P450 gene of Taxol biosynthesis to be isolated by an approach that should provide access to the remaining oxygenases of the pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our understanding of the mammalian cell cycle is due in large part to the analysis of cyclin-dependent kinase (CDK) 2 and CDK4/6. These kinases are regulated by E and D type cyclins, respectively, and coordinate the G1/S-phase transition. In contrast, little is known about CDK3, a homolog of CDK2 and cell division cycle kinase 2 (CDC2). Previous studies using ectopic expression of human CDK3 suggest a role for this kinase in the G1/S-phase transition, but analysis of the endogenous kinase has been stymied by the low levels of protein present in cells and by the absence of an identifiable cyclin partner. Herein we report the presence of a single point mutation in the CDK3 gene from several Mus musculus strains commonly used in the laboratory. This mutation results in the replacement of a conserved tryptophan (Trp-187) within kinase consensus domain IX with a stop codon. The protein predicted to be encoded by this allele is truncated near the T loop, which is involved in activation by CDK-activating kinase. This mutation also deletes motif XI known to be required for kinase function and is, therefore, expected to generate a null allele. In stark contrast, CDK3 from two wild-mice species (Mus spretus and Mus mus castaneus) lack this mutation. These data indicate that CDK3 is not required for M. musculus development and suggest that any functional role played by CDK3 in the G1/S-phase transition is likely to be redundant with another CDK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most eukaryotic cells, mitochondria use the respiratory chain to produce a proton gradient, which is then harnessed for the synthesis of ATP. Recently, mitochondrial roles in regulation of apoptosis have been discovered in many cell types. Eosinophils (Eos) die by apoptosis, but the presence and function of mitochondria in Eos are unknown. This study found that Eos contain mitochondria in small numbers, as shown by labeling with membrane potential-sensitive dyes and in situ PCR for a mitochondrial gene. Eos generate mitochondrial membrane potential from hydrolysis of ATP rather than from respiration, as shown by mitochondrial respiratory inhibitors and mitochondrial uncouplers. The mitochondria provide insignificant respiration but can induce apoptosis, as shown by using the mitochondrial F1F0-ATPase inhibitor oligomycin and translocation of cytochrome c. Thus during differentiation of Eos, although respiration is lost, the other central role of mitochondria, the induction of apoptosis, is retained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal aging is associated with a significant reduction in cognitive function across primate species. However, the structural and molecular basis for this age-related decline in neural function has yet to be defined clearly. Extensive cell loss does not occur as a consequence of normal aging in human and nonhuman primate species. More recent studies have demonstrated significant reductions in functional neuronal markers in subcortical brain regions in primates as a consequence of aging, including dopaminergic and cholinergic systems, although corresponding losses in cortical innervation from these neurons have not been investigated. In the present study, we report that aging is associated with a significant 25% reduction in cortical innervation by cholinergic systems in rhesus monkeys (P < 0.001). Further, these age-related reductions are ameliorated by cellular delivery of human nerve growth factor to cholinergic somata in the basal forebrain, restoring levels of cholinergic innervation in the cortex to those of young monkeys (P = 0.89). Thus, (i) aging is associated with a significant reduction in cortical cholinergic innervation; (ii) this reduction is reversible by growth-factor delivery; and (iii) growth factors can remodel axonal terminal fields at a distance, representing a nontropic action of growth factors in modulating adult neuronal structure and function (i.e., administration of growth factors to cholinergic somata significantly increases axon density in terminal fields). These findings are relevant to potential clinical uses of growth factors to treat neurological disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The functional characteristics and cellular localization of the γaminobutyric acid (GABA) ρ1 receptor and its nonfunctional isoform ρ1Δ450 were investigated by expressing them as gene fusions with the enhanced version of the green fluorescent protein (GFP). Oocytes injected with ρ1-GFP had receptors that gated chloride channels when activated by GABA. The functional characteristics of these receptors were the same as for those of wild-type ρ1 receptors. Fluorescence, because of the chimeric receptors expressed, was over the whole oocyte but was more intense near the cell surface and more abundant in the animal hemisphere. Similar to the wild type, ρ1Δ450-GFP did not lead to the expression of functional GABA receptors, and injected oocytes failed to generate currents even after exposure to high concentrations of GABA. Nonetheless, the fluorescence displayed by oocytes expressing ρ1Δ450-GFP was distributed similarly to that of ρ1-GFP. Mammalian cells transfected with the ρ1-GFP or ρ1Δ450-GFP constructs showed mostly intracellularly distributed fluorescence in confocal microscope images. A sparse localization of fluorescence was observed in the plasma membrane regardless of the cell line used. We conclude that ρ1Δ450 is expressed and transported close to, and perhaps incorporated into, the plasma membrane. Thus, ρ1- and ρ1Δ450-GFP fusions provide a powerful tool to visualize the traffic of GABA type C receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Termination of murine rDNA transcription by RNA polymerase I (Pol I) requires pausing of Pol I by terminator-bound TTF-I (transcription termination factor for Pol I), followed by dissociation of the ternary complex by PTRF (Pol I and transcript release factor). To examine the functional correlation between transcription termination and initiation, we have compared transcription on terminator-containing and terminator-less rDNA templates. We demonstrate that terminated RNA molecules are more efficiently synthesized than run-off transcripts, indicating that termination facilitates reinitiation. Transcriptional enhancement is observed in multiple- but not single-round transcription assays measuring either promoter-dependent or promoter-independent Pol I transcription. Increased synthesis of terminated transcripts is observed in crude extracts but not in a PTRF-free reconstituted transcription system, indicating that PTRF-mediated release of pre-rRNA is responsible for transcriptional enhancement. Consistent with PTRF serving an important role in modulating the efficiency of rRNA synthesis, PTRF exhibits pronounced charge heterogeneity, is phosphorylated at multiple sites and fractionates into transcriptionally active and inactive forms. The results suggest that regulation of PTRF activity may be an as yet unrecognized means to control the efficiency of ribosomal RNA synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While genome sequencing projects are advancing rapidly, EST sequencing and analysis remains a primary research tool for the identification and categorization of gene sequences in a wide variety of species and an important resource for annotation of genomic sequence. The TIGR Gene Indices (http://www.tigr.org/tdb/tgi.shtml) are a collection of species-specific databases that use a highly refined protocol to analyze EST sequences in an attempt to identify the genes represented by that data and to provide additional information regarding those genes. Gene Indices are constructed by first clustering, then assembling EST and annotated gene sequences from GenBank for the targeted species. This process produces a set of unique, high-fidelity virtual transcripts, or Tentative Consensus (TC) sequences. The TC sequences can be used to provide putative genes with functional annotation, to link the transcripts to mapping and genomic sequence data, to provide links between orthologous and paralogous genes and as a resource for comparative sequence analysis.