932 resultados para Full-length Human


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dictyostelium discoideum is a simple model widely used to study many cellular functions, including differentiation, gene regulation, cellular trafficking and directional migration. Adaptation mechanisms are essential in the regulation of these cellular processes. The misregulation of adaptation components often results in persistent activation of signaling pathways and aberrant cellular responses. Studying adaptation mechanisms regulating cellular migration will be crucial in the treatment of many pathological conditions in which motility plays a central role, such as tumor metastasis and acute inflammation. I will describe two adaptation mechanisms regulating directional migration in Dictyostelium cells. The Extracellular signal Regulated Kinase 2 (ERK2) plays an essential role in Dictyostelium cellular migration. ERK2 stimulates intracellular cAMP accumulation in chemotaxing cells. Aberrant ERK2 regulation results in aberrant cAMP levels and defective directional migration. The MAP Phosphatase with Leucine-rich repeats (MPL1) is crucial for ERK2 adaptation. Cells lacking, MPL1 (mpl1- cells) displayed higher pre-stimulus and persistent post-stimulus ERK2 phosphorylation, defective cAMP production and reduced cellular migration. Reintroduction of a full length Mpl1 into mpl1- cells restored aggregation, ERK2 regulation, random and directional motility, and cAMP production similar to wild type cells (Wt). These results suggest Mpl1 is essential for proper regulation of ERK2 phosphorylation and optimal motility in Dictyostelium cells. Cellular polarization in Dictyostelium cells in part is regulated by the activation of the AGC-related kinase Protein Kinase Related B1 (PKBR1). The PP2A regulatory subunit, B56, and the Glycogen Synthase Kinase 3 (GSK3) are necessary for PKBR1 adaptation in Dictyostelium cells. Cells lacking B56, psrA-cells, exhibited high basal and post-stimulus persistent phosphorylation of PKBR1, increased phosphorylation of PKBR1 substrates, and aberrant motility. PKBR1 adaptation is also regulated by the GSK3. When the levels of active GSK3 are reduced in Wt and psrA- cells, high basal levels of phosphorylated PKBR1 were observed, in a Ras dependent, but B56 independent mechanism. Altogether, PKBR1 adaptation is regulated by at least two independent mechanisms: one by GSK3 and another by PP2A/B56.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over 30% of the Antarctic continental shelf is permanently covered by floating ice shelves, providing aphotic conditions for a depauperate fauna sustained by laterally advected food. In much of the remaining Antarctic shallows (<300 m depth), seasonal sea-ice melting allows a patchy primary production supporting rich megabenthic communities dominated by glass sponges (Porifera, Hexactinellida). The catastrophic collapse of ice shelves due to rapid regional warming along the Antarctic Peninsula in recent decades has exposed over 23,000 km**2 of seafloor to local primary production. The response of the benthos to this unprecedented flux of food is, however, still unknown. In 2007, 12 years after disintegration of the Larsen A ice shelf, a first biological survey interpreted the presence of hexactinellids as remnants of a former under-ice fauna with deep-sea characteristics. Four years later, we revisited the original transect, finding 2- and 3-fold increases in glass sponge biomass and abundance, respectively, after only two favorable growth periods. Our findings, along with other long-term studies, suggest that Antarctic hexactinellids, locked in arrested growth for decades, may undergo boom-and-bust cycles, allowing them to quickly colonize new habitats. The cues triggering growth and reproduction in Antarctic glass sponges remain enigmatic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recoding embraces mechanisms that augment the rules of standard genetic decoding. The deviations from standard decoding are often purposeful and their realisation provides diverse and flexible regulatory mechanisms. Recoding events such as programed ribosomal frameshifting are especially plentiful in viruses. In most organisms only a few cellular genes are known to employ programed ribosomal frameshifting in their expression. By far the most prominent and therefore well-studied case of cellular +1 frameshifting is in expression of antizyme mRNAs. The protein antizyme is a key regulator of polyamine levels in most eukaryotes with some exceptions such as plants. A +1 frameshifting event is required for the full length protein to be synthesized and this requirement is a conserved feature of antizyme mRNAs from yeast to mammals. The efficiency of the frameshifting event is dependent on the free polyamine levels in the cell. cis-acting elements in antizyme mRNAs such as specific RNA structures are required to stimulate the frameshifting efficiency. Here I describe a novel stimulator of antizyme +1 frameshifting in the Agaricomycotina class of Basidiomycete fungi. It is a nascent peptide that acts from within the ribosome exit tunnel to stimulate frameshifting efficiency in response to polyamines. The interactions of the nascent peptide with components of the peptidyl transferase centre and the protein exit tunnel emerge in our understanding as powerful means which the cell employs for monitoring and tuning the translational process. These interactions can modulate the rate of translation, protein cotranslational folding and localization. Some nascent peptides act in concert with small molecules such as polyamines or antibiotics to stall the ribosome. To these known nascent peptide effects we have added that of a stimulatory effect on the +1 frameshifting in antizyme mRNAs. It is becoming evident that nascent peptide involvement in regulation of translation is a much more general phenomenon than previously anticipated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dictyostelium discoideum is a simple model widely used to study many cellular functions, including differentiation, gene regulation, cellular trafficking and directional migration. Adaptation mechanisms are essential in the regulation of these cellular processes. The misregulation of adaptation components often results in persistent activation of signaling pathways and aberrant cellular responses. Studying adaptation mechanisms regulating cellular migration will be crucial in the treatment of many pathological conditions in which motility plays a central role, such as tumor metastasis and acute inflammation. I will describe two adaptation mechanisms regulating directional migration in Dictyostelium cells. The Extracellular signal Regulated Kinase 2 (ERK2) plays an essential role in Dictyostelium cellular migration. ERK2 stimulates intracellular cAMP accumulation in chemotaxing cells. Aberrant ERK2 regulation results in aberrant cAMP levels and defective directional migration. The MAP Phosphatase with Leucine-rich repeats (MPL1) is crucial for ERK2 adaptation. Cells lacking, MPL1 (mpl1- cells) displayed higher pre-stimulus and persistent post-stimulus ERK2 phosphorylation, defective cAMP production and reduced cellular migration. Reintroduction of a full length Mpl1 into mpl1- cells restored aggregation, ERK2 regulation, random and directional motility, and cAMP production similar to wild type cells (Wt). These results suggest Mpl1 is essential for proper regulation of ERK2 phosphorylation and optimal motility in Dictyostelium cells. Cellular polarization in Dictyostelium cells in part is regulated by the activation of the AGC-related kinase Protein Kinase Related B1 (PKBR1). The PP2A regulatory subunit, B56, and the Glycogen Synthase Kinase 3 (GSK3) are necessary for PKBR1 adaptation in Dictyostelium cells. Cells lacking B56, psrA-cells, exhibited high basal and post-stimulus persistent phosphorylation of PKBR1, increased phosphorylation of PKBR1 substrates, and aberrant motility. PKBR1 adaptation is also regulated by the GSK3. When the levels of active GSK3 are reduced in Wt and psrA- cells, high basal levels of phosphorylated PKBR1 were observed, in a Ras dependent, but B56 independent mechanism. Altogether, PKBR1 adaptation is regulated by at least two independent mechanisms: one by GSK3 and another by PP2A/B56.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alzheimer's disease is the most common type of dementia in the elderly; it is characterized by early deficits in learning and memory formation and ultimately leads to a generalised loss of higher cognitive functions. While amyloid beta (Aβ) and tau are traditionally associated with the development of Alzheimer disease, recent studies suggest that other factors, like the intracellular domain (APP-ICD) of the amyloid precursor protein (APP), could play a role. In this study, we investigated whether APP-ICD could affect synaptic transmission and synaptic plasticity in the hippocampus, which is involved in learning and memory processes. Our results indicated that overexpression of APP-ICD in hippocampal CA1 neurons leads to a decrease in evoked AMPA-receptor and NMDA-receptor dependent synaptic transmission. Our study demonstrated that this effect is specific for APP-ICD since its closest homologue APLP2-ICD did not reproduce this effect. In addition, APP-ICD blocks the induction of long term potentiation (LTP) and leads to increased of expression and facilitated induction of long term depression (LTD), while APLP2-ICD shows neither of these effects. Our study showed that this difference observed in synaptic transmission and plasticity between the two intracellular domains resides in the difference of one alanine in the APP-ICD versus a proline in the APLP2-ICD. Exchanging this critical amino-acid through point-mutation, we observed that APP(PAV)-ICD had no longer an effect on synaptic plasticity. We also demonstrated that APLP2(AAV)-ICD mimic the effect of APP-ICD in regards of facilitated LTD. Next we showed that the full length APP-APLP2-APP (APP with a substitution of the Aβ component for its homologous APLP2 part) had no effect on synaptic transmission or synaptic plasticity when compared to the APP-ICD. However, by activating caspase cleavage prior to induction of LTD or LTP, we observed an LTD facilitation and a block of LTP with APP-APLP2-APP, effects that were not seen with the full length APLP2 protein. APP is phosphorylated at threonine 668 (Thr668), which is localized directly after the aforementioned critical alanine and the caspase cleavage site in APP-APLP2-APP. Mutating this Thr668 for an alanine abolishes the effects on LTD and restores LTP induction. Finally, we showed that the facilitation of LTD with APP-APLP2-APP involves ryanodine receptor dependent calcium release from intracellular stores. Taken together, we propose the emergence of a new APP intracellular domain, which plays a critical role in the regulation of synaptic plasticity and by extension, could play a role in the development of memory loss in Alzheimer’s disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The importance of RNA as a mediator of genetic information is widely appreciated. RNA molecules also participate in the regulation of various post-transcriptional activities, such as mRNA splicing, editing, RNA stability and transport. Their regulatory roles for these activities are highly dependent on finely tuned associations with cognate proteins. The RNA recognition motif (RRM) is an ancient RNA binding module that participates in hundreds of essential activities where specific RNA recognition is required. We have applied phage display and site-directed mutagenesis to dissect principles of RRM-controlled RNA recognition. The model systems we are investigating are U1A and CUG-BP1. In this dissertation, the molecular basis of the binding affinity of U1A-RNA beyond individual contacts was investigated. We have identified and evaluated the contributions of the local cooperativity formed by three neighboring residues (Asn15, Asn16 and Glu19) to the stability of the U1A-RNA complex. The localized cooperative network was mapped by double-mutant cycles and explored using phage display. We also showed that a cluster of these residues forms a “hot spot” on the surface of U1A; a single substitution at position 19 with Gln or His can alter the binding properties of U1A to recognize a non-cognate G4U RNA. Finally, we applied a deletion analysis of CUG-BP1 to define the contributions of individual RRMs and RRM combinations to the stability of the complex formed between CUG-BP1 and the GRE sequence. The preliminary results showed RRM3 of CUG-BP1 is a key domain for RNA binding. It possibly binds to the GRE sequence cooperatively with RRM2 of CUG-BP1. RRM1 of CUG-BP1 is not required for GRE recognition, but may be important for maintaining the stability of the full-length CUG-BP1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the existing understanding of flame spread dynamics is enhanced through an extensive study of the heat transfer from flames spreading vertically upwards across 5 cm wide, 20 cm tall samples of extruded Poly (Methyl Methacrylate) (PMMA). These experiments have provided highly spatially resolved measurements of flame to surface heat flux and material burning rate at the critical length scale of interest, with a level of accuracy and detail unmatched by previous empirical or computational studies. Using these measurements, a wall flame model was developed that describes a flame’s heat feedback profile (both in the continuous flame region and the thermal plume above) solely as a function of material burning rate. Additional experiments were conducted to measure flame heat flux and sample mass loss rate as flames spread vertically upwards over the surface of seven other commonly used polymers, two of which are glass reinforced composite materials. Using these measurements, our wall flame model has been generalized such that it can predict heat feedback from flames supported by a wide range of materials. For the seven materials tested here – which present a varied range of burning behaviors including dripping, polymer melt flow, sample burnout, and heavy soot formation – model-predicted flame heat flux has been shown to match experimental measurements (taken across the full length of the flame) with an average accuracy of 3.9 kW m-2 (approximately 10 – 15 % of peak measured flame heat flux). This flame model has since been coupled with a powerful solid phase pyrolysis solver, ThermaKin2D, which computes the transient rate of gaseous fuel production of constituents of a pyrolyzing solid in response to an external heat flux, based on fundamental physical and chemical properties. Together, this unified model captures the two fundamental controlling mechanisms of upward flame spread – gas phase flame heat transfer and solid phase material degradation. This has enabled simulations of flame spread dynamics with a reasonable computational cost and accuracy beyond that of current models. This unified model of material degradation provides the framework to quantitatively study material burning behavior in response to a wide range of common fire scenarios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Betanodavirus infections have a significant impact through direct losses and trade restrictions for aquaculture sectors in Australia. The giant grouper, Epinephelus lanceolatus, is a high-value, fast-growing species with significant aquaculture potential. With subacute to chronic mortalities reported from a commercial aquaculture facility in northern Queensland, the viral nervous necrosis in the affected fish was confirmed using a RT-qPCR followed by virus isolation using the SSN-1 cell line. The RNA1 and RNA2 segments were sequenced and nucleotide sequences were compared with betanodavirus sequences from GenBank. Phylogenetic analysis revealed that both these sequences clustered with sequences representing red spotted grouper nervous necrosis virus genotype and showed high sequence identity to virus sequences affecting other grouper species. This is the first report confirming infection by betanodavirus in E. lanceolatus from Australia with successful isolation of the virus in a cell culture system, and analysis of nearly full length RNA1 and RNA2 sequences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents a dataset proving the simultaneous presence of a 5′UTR-truncated PDHA1 mRNA and a full-length PDHA2 mRNA in the somatic cells of a PDC-deficient female patient and all members of her immediate family (parents and brother). We have designed a large set of primer pairs in order to perform detailed RT-PCR assays allowing the clear identification of both PDHA1 and PDHA2 mRNA species in somatic cells. In addition, two different experimental approaches were used to elucidate the copy number of PDHA1 gene in the patient and her mother. The interpretation and discussion of these data, along with further extensive experiments concerning the origin of this altered gene expression and its potential therapeutic consequences, can be found in “Complex genetic findings in a female patient with pyruvate dehydrogenase complex deficiency: null mutations in the PDHX gene associated with unusual expression of the testis-specific PDHA2 gene in her somatic cells” (A. Pinheiro, M.J. Silva, C. Florindo, et al., 2016).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The exocarp, or skin, of fleshy fruit is a specialized tissue that protects the fruit, attracts seed dispersing fruit eaters, and has large economical relevance for fruit quality. Development of the exocarp involves regulated activities of many genes. This research analyzed global gene expression in the exocarp of developing sweet cherry (Prunus avium L., 'Regina'), a fruit crop species with little public genomic resources. A catalog of transcript models (contigs) representing expressed genes was constructed from de novo assembled short complementary DNA (cDNA) sequences generated from developing fruit between flowering and maturity at 14 time points. Expression levels in each sample were estimated for 34 695 contigs from numbers of reads mapping to each contig. Contigs were annotated functionally based on BLAST, gene ontology and InterProScan analyses. Coregulated genes were detected using partitional clustering of expression patterns. The results are discussed with emphasis on genes putatively involved in cuticle deposition, cell wall metabolism and sugar transport. The high temporal resolution of the expression patterns presented here reveals finely tuned developmental specialization of individual members of gene families. Moreover, the de novo assembled sweet cherry fruit transcriptome with 7760 full-length protein coding sequences and over 20 000 other, annotated cDNA sequences together with their developmental expression patterns is expected to accelerate molecular research on this important tree fruit crop.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Em peixes, o cobre (Cu) é absorvido a partir da água, via branquial, e pela ingestão de água e alimento, via gastrintestinal. Para evitar reações não específicas prejudiciais e suprir proteínas dependentes de Cu, existem transportadores específicos, como as proteínas de absorção de alta afinidade ao Cu (CTR1) e as Cu-ATPases (ATP7), que auxiliam na translocação intracelular do metal. No presente estudo, os genes CTR1 e ATP7B foram identificados em Poecilia vivipara e os seus transcritos foram quantificados por RT-qPCR nas brânquias, no fígado e no intestino de guarús expostos (96 h) ao Cu (0, 5, 9 e 20 µg/L) em água doce e salgada (salinidade 24). Foram identificadas novas sequências nucleotídicas dos genes CTR1 (1560 pb, completa) e ATP7B (617 pb, parcial), as quais tiveram altos valores de identidade com as descritas para Fundulus heteroclitus (CTR1=81%) e Sparus aurata (ATP7B=81%). A análise por RT-qPCR indicou níveis de transcrição para CTR1 e ATP7B em todos os tecidos analisados. Em guarús na água doce, a maior expressão da CTR1 e da ATP7B se deu no fígado. Em guarús na água salgada, a maior expressão da CTR1 ocorreu no intestino, enquanto a da ATP7B se deu no fígado e intestino. Na água doce, a exposição ao Cu aumentou o conteúdo branquial e hepático de Cu, diminuiu os transcritos de CTR1 e ATP7B nas brânquias e aumentou os transcritos destes genes no fígado, sem alterar o conteúdo corporal de Cu. Na água salgada, a exposição ao Cu aumentou o conteúdo de Cu e diminuiu o transcrito de ATP7B no intestino, sem alterar o conteúdo corporal de Cu nos P. vivipara. Estes resultados indicam que a homeostasia do Cu em P. vivipara envolve a redução da expressão do CTR1 e ATP7B nas brânquias (água doce) e intestino (água salgada) para limitar a absorção do Cu e o aumento da expressão destes genes no fígado (água doce) para facilitar o armazenamento e desintoxicação do Cu.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monoclonal antibodies and novel antibody formats are currently one of the principal therapeutic in the biopharmaceutical industry worldwide and are widely used in the treatment of autoimmune diseases and cancer. It is for this reason that the productivity and quality of antibody production requires improvement; specifically investigations into the engineering of antibodies and any issues that may arise from the production of these therapeutics. The work presented in this thesis describes an investigation into the folding and assembly of seven antibodies plus the novel antibody format FabFv. IgG is comprised of two identical HCs and two identical LCs. The folding process of immunoglobulin is controlled by the CH1 domain within the HC. The CH1 domain remains in a disordered state and is sequestered by BiP in the endoplasmic reticulum. Upon the addition of a folded CL domain, BiP is displaced, the CH1 domain is able to fold and the complete IgG protein can then be secreted from the cell. The results presented in this thesis however, have outlined an additional mechanism for the folding of the CH1 domain. We have shown that the CH1 domain is able to fold in the absence of LC resulting in the secretion of HC dimers in a VH dependent manner. The proposed mechanism for the secretion of HC dimers suggests that some VH domains can interact with each other in order to bring the CH1 domains in close proximity to enable folding to occur. As HC dimer secretion is a hindrance in antibody production, this result has highlighted an engineering target to improve antibody yield. Examination of the folding of IgG4 with the variable region A33 has revealed the inability to secrete LC dimers, cleavage of the HC during expression and secretion of HC dimers in the Fab, FabFv and full length forms. The attributes described have also been shown to be variable region dependent. This has introduced a new concept that the variable domain is important in determining the expression and secretion of antibodies and their individual chains. Pulse chase and 2D gel electrophoresis analysis of the novel antibody format FabFv has revealed that the folding and expression of the LC and HC causes multimeric species of FabFv to be secreted, as opposed to the monomeric form which is the desired therapeutic. Our hypothesis is that this process occurs via a LC dependent mechanism. The proposed hypothesis suggests that further engineering to the LC could diminish the formation and secretion of FabFv multimers. The results from these investigations can be applied to increase the productivity of therapeutics and increase the biological understanding of the domain interactions of IgG during folding, assembly and secretion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alzheimer's disease is the most common type of dementia in the elderly; it is characterized by early deficits in learning and memory formation and ultimately leads to a generalised loss of higher cognitive functions. While amyloid beta (Aβ) and tau are traditionally associated with the development of Alzheimer disease, recent studies suggest that other factors, like the intracellular domain (APP-ICD) of the amyloid precursor protein (APP), could play a role. In this study, we investigated whether APP-ICD could affect synaptic transmission and synaptic plasticity in the hippocampus, which is involved in learning and memory processes. Our results indicated that overexpression of APP-ICD in hippocampal CA1 neurons leads to a decrease in evoked AMPA-receptor and NMDA-receptor dependent synaptic transmission. Our study demonstrated that this effect is specific for APP-ICD since its closest homologue APLP2-ICD did not reproduce this effect. In addition, APP-ICD blocks the induction of long term potentiation (LTP) and leads to increased of expression and facilitated induction of long term depression (LTD), while APLP2-ICD shows neither of these effects. Our study showed that this difference observed in synaptic transmission and plasticity between the two intracellular domains resides in the difference of one alanine in the APP-ICD versus a proline in the APLP2-ICD. Exchanging this critical amino-acid through point-mutation, we observed that APP(PAV)-ICD had no longer an effect on synaptic plasticity. We also demonstrated that APLP2(AAV)-ICD mimic the effect of APP-ICD in regards of facilitated LTD. Next we showed that the full length APP-APLP2-APP (APP with a substitution of the Aβ component for its homologous APLP2 part) had no effect on synaptic transmission or synaptic plasticity when compared to the APP-ICD. However, by activating caspase cleavage prior to induction of LTD or LTP, we observed an LTD facilitation and a block of LTP with APP-APLP2-APP, effects that were not seen with the full length APLP2 protein. APP is phosphorylated at threonine 668 (Thr668), which is localized directly after the aforementioned critical alanine and the caspase cleavage site in APP-APLP2-APP. Mutating this Thr668 for an alanine abolishes the effects on LTD and restores LTP induction. Finally, we showed that the facilitation of LTD with APP-APLP2-APP involves ryanodine receptor dependent calcium release from intracellular stores. Taken together, we propose the emergence of a new APP intracellular domain, which plays a critical role in the regulation of synaptic plasticity and by extension, could play a role in the development of memory loss in Alzheimer’s disease.