916 resultados para Frequency bands
Resumo:
A connection is shown to exist between the mesoscale eddy activity around Madagascar and the large-scale interannual variability in the Indian Ocean. We use the combined TOPEX/Poseidon-ERS sea surface height (SSH) data for the period 1993–2003. The SSH-fields in the Mozambique Channel and east of Madagascar exhibit a significant interannual oscillation. This is related to the arrival of large-scale anomalies that propagate westward along 10°–15°S in response to the Indian Ocean dipole (IOD) events. Positive (negative) SSH anomalies associated to a positive (negative) IOD phase induce a shift in the intensity and position of the tropical and subtropical gyres. A weakening (strengthening) results in the intensity of the South Equatorial Current and its branches along east Madagascar. In addition, the flow through the narrows of the Mozambique Channel around 17°S increases (decreases) during periods of a stronger and northward (southward) extension of the subtropical (tropical) gyre. Interaction between the currents in the narrows and southward propagating eddies from the northern Channel leads to interannual variability in the eddy kinetic energy of the central Channel in phase with the one in the SSH-field.
Resumo:
Rotational structure has been resolved and analyzed in two of the infrared‐active perpendicular bands of C2H4 vapor: the Type b fundamental band, ν10, at 826 cm—1, and the Type c fundamental band, ν7, at 949 cm—1. Many of the individual PP and RR branch lines have been observed. The analysis has been confined to values of the quantum number K≥3, for which energy levels ethylene shows no detectable deviations from a symmetric‐top rotational structure. The analysis reveals a Coriolis interaction between ν7 and ν10, and between ν4 and ν10, and values of the Coriolis constants ζ7,10z and ζ4,10y are obtained; these are related to normal coordinate calculations for the appropriate symmetry species, and force constants are derived to fit the observed zeta constants. The band center of ν10 has been revised from the original figure of 810 cm—1 to the new value, 826 cm—1, and the inactive frequency ν4 is estimated to lie at 1023±3 cm—1, in good agreement with the previous estimate of 1027 cm—1. The change in the value of ν10 leads to a suggested change in the value of the Raman‐active fundamental ν6 from 1236 to 1222 cm—1. New combination bands have been observed at 2174 cm—1, assigned as ν3+ν10; and at 2252 cm—1, assigned as ν4+ν6; also rotational structure has been resolved and analyzed in the ν6+ν10 band at 2048 cm—1. The new data obtained for the C2H4 molecule are summarized in Table XII, with all of the other data presently available on the vibrational and rotational constants.
Resumo:
Changes in the effective potential function of a low-frequency large-amplitude molecular vibration, resulting from excitation of a high-frequency vibration, are discussed. It is shown that in some situations a significant contribution to such changes may arise from failure of the Born-Oppenheimer separation of the low-frequency mode. In the particular example of the HF dimer, recent evidence that the tunneling barrier increases on exciting either of the H-stretching vibrations is probably due to this effect.
Resumo:
Absolute intensity measurements have been made on the fundamental vibrations of C2H6 and C2D6, using the extrapolation method of Wilson and Wells and using nitrogen at pressures up to 50 atmospheres to broaden the bands. The absorption coefficient was integrated against the logarithm of the frequency. Normal coordinates were calculated from the potential function of Hansen and Dennison, and were used to interpret the results in terms of quantities (∂p/∂Si) giving the change of dipole moment with respect to the symmetry coordinates Si. Consistency of data between the isotopes was used both to eliminate ambiguities in the interpretation, and as a criterion in separating overlapping pairs of absorption bands. The results have been interpreted in terms of bond effective moments.
Resumo:
The ir absorption of gaseous 15NH3 between 510 and 3040 cm−1 was recorded with a resolution of 0.06 cm−1. The ν2, 2ν2, 3ν2, ν4, and ν2 + ν4 bands were measured and analyzed on the basis of the vibration-rotation Hamiltonian developed by V. Špirko, J. M. R. Stone, and D. Papoušek (J. Mol. Spectrosc. 60, 159–178 (1976)). A set of effective molecular parameters for the ν2 = 1, 2, 3 states was derived, which reproduced the transition frequencies within the accuracy of the experimental measurements. For ν4 and ν2 + ν4 bands the standard deviation of the calculated spectrum is about four times larger than the measurements accuracy: a similar result was found for ν4 in 14NH3 by Š. Urban et al. (J. Mol. Spectrosc. 79, 455–495 (1980)). This result suggests that the present treatment takes into account only the most significant part of the rovibration interaction in the doubly degenerate vibrational states of ammonia.
Resumo:
Some absorption bands of diazomethane vapour between 1950-3500 cm-1 have been measured with very high resolving power. The rotational structure of two parallel bands and of one perpendicular band has been resolved, and approximate values have been determined for the rotational constants. The results are consistent with the geometrical structure usually accepted for this molecule. A peculiarity in the results for the band near 2100 cm-1, together with other facts, leads to the suggestion that a tautomeric form of this molecule exists, HCN=NH, being an isoelectronic analogue of hydrazoic acid.
Resumo:
Vibration rotation spectra of HO15 NO and DO15 NO have been measured at a resolution of 0•04 cm-1 to determine the isotopic shifts in the vibrational band origins. These have been used together with recently determined data on the vibrational band origins, Coriolis constants, and centrifugal distorition constants, to determine the harmonic force field of both cis and trans nitrous acid in least squares refinement calculations. The results are discussed in relation to recent ab initio calculations, the inertia defects, and the torsional potential function.
Resumo:
The vibration-rotation Raman spectrum of the ν2 and ν5 fundamentals of CH3F is reported, from 1320 to 1640 cm−1, with a resolution of about 0.3 cm−1. The Coriolis resonance between the two bands leads to many perturbation-allowed transitions. Where the resonance is still sufficiently weak that the quantum number K′ retains its meaning, perturbation-allowed transitions are observed for all values of ΔK from +4 to −4; in regions of strong resonance, however, we can only say that the observed transitions obey the selection rule Δ(k−l) = 0 or ±3. The spectrum has been analyzed by band contour simulation using a computer program based on exact diagonalization of the Hamiltonian within the ν2, ν5 vibrational levels, and improved vibration-rotation constants for these bands are reported. The relative magnitudes and relative sings of polarizability derivatives involved in these vibrations are also reported.
Resumo:
High‐resolution infrared spectra of B2H6 vapor are reported. The sample was prepared from the naturally occurring 11B☒10B isotopic mixture. The rotational structure of the infrared bands has been analysed for Coriolis perturbations due to rotation about the axis of least moment of inertia (the B⋅⋅⋅B axis). The following results have been obtained: (a) interaction between the Type A fundamental ν18 and the inactive fundamental ν5 has been observed, thus confirming the assignment of ν5 at 833 cm—1, giving ∣ ζ5,18Z ∣=0.55±0.05; (b) interaction observed between the Type A combination band (ν10+ν12) at 1283 cm—1 and the inactive combination (ν10+ν7) gives an estimate of the unobserved fundamental ν7 as 850±30 cm—1, and an estimate of ∣ ζ7,12Z ∣=0.6±0.1; (c) the absence of any observed perturbation of the Type C fundamental ν14 at 973 cm—1, suggests, by negative arguments, that either the unobserved fundamental ν9 does not lie in the frequency range 900 to 1100 cm—1, or ∣ ζ9,14Z ∣<0.2. The assignment of the unobserved fundamental vibrations of diborane is discussed in the light of this evidence.
Resumo:
An Orthogonal Frequency Division Multiplexing (OFDM) communication system with a transmitter and a receiver. The transmitter is arranged to transmit channel estimation sequences on each of a plurality of band groups, or bands, and to transmit data on each of the band groups or bands. The receiver is arranged to receive the channel estimation sequences for each band group or band to calculate channel state information from each of the channel estimation sequences transmitted on that band group or band and to form an average channel state information. The receiver receives the transmitted data, transforms the received data into the frequency domain, equalizes the received data using the channel state information, demaps the equalized data to re-construct the received data as soft bits and modifies the soft bits using the averaged channel state information.
Resumo:
The absolute intensities of all except one of the infra-red fundamental vibration bands of dimethyl acetylene have been determined, and the results have been used to compute polar properties of the C—H and C—C bonds. It has been found that if the very probable assumption is made that the acetylenic carbon atoms carry a residual negative charge, the hydrogen atoms in the C—H bonds must carry a residual positive charge. The probable value of the C—H dipole is about 04 Debye, and that of the C—C bond about 1 Debye. Comparisons have been made with the results of similar work with related molecules.
Resumo:
A high resolution Fourier transform infrared spectrum of methyleneimine, HN=CH2, has been obtained in the gas phase in the region 700 to 1300 cm−1. The rovibrational line intensities of the three lowest fundamentals ν7 (A′), ν8 (A″), and ν9 (A″) have been simulated including all Coriolis interactions between the three bands, and by fitting the observed spectrum the relative signs and magnitudes of the vibrational transition moments have been determined. All of the available spectroscopic data have been used to determine the harmonic force field of methyleneimine.
Resumo:
The effects of ℓ-type resonance on rovibrational bands in infrared spectra are reviewed. Observed spectra are compared with computer-simulated spectra obtained by solving the Hamiltonian matrix numerically and calculating the true (perturbed) wavenumber and intensity of each line in the band. The most obvious effects in the spectra are shown to result from intensity perturbations rather than line-shifts; in oblate symmetric tops the Q branch structure near the band center may show anomalies due to ℓ-resonance even at quite low resolution and even when the accidental resonance is not very exact. Numerical values of ℓ-doubling constants are obtained for several cyclopropane bands by comparing observed band contours at about 0.2-cm−1 resolution with computed contours. Although the constants are not determined with great precision, the sign of the ℓ-doubling constants is determined unambiguously.
Resumo:
The Fourier-transform spectrum of CH3F from 2800 to 3100 cm−1, obtained by Guelachvili in Orsay at a resolution of about 0.003 cm−1, was analyzed. The effective Hamiltonian used contained all symmetry allowed interactions up to second order in the Amat-Nielsen classification, together with selected third-order terms, amongst the set of nine vibrational basis functions represented by the states ν1(A1), ν4(E), 2ν2(A1), ν2 + ν5(E), 2ν50(A1), and 2ν5±2(E). A number of strong Fermi and Coriolis resonances are involved. The vibrational Hamiltonian matrix was not factorized beyond the requirements of symmetry. A total of 59 molecular parameters were refined in a simultaneous least-squares analysis to over 1500 upper-state energy levels for J ≤ 20 with a standard deviation of 0.013 cm−1. Although the standard deviation remains an order of magnitude greater than the precision of the measurements, this work breaks new ground in the simultaneous analysis of interacting symmetric top vibrational levels, in terms of the number of interacting vibrational states and the number of parameters in the Hamiltonian.