809 resultados para Free radical reactions
Resumo:
Since Altmann recognized ubiquitously distributed "bioblasts" in 1890, understanding of mitochondria has evolved from "elementary organisms" living inside cells and carrying out vital functions, over the Harman's "free radical theory" in 1956, to one of the driving forces of aging and cause of multiple associated diseases impacting society today. While a tremendous amount of work has contributed to the understanding of mitochondrial biology in different model organisms, the precise molecular mechanisms of basic mitochondrial function have yet to be deciphered. By employing an RNA interference mediated screen in Caenorhabditis elegans, we identified two transcription factors: SPTF-3, a member of Sp1 family, and an uncharacterized, nematode specific W04D2.4. We propose that both proteins modulate expression of many genes with regard to mitochondrial function including mitochondrial single-stranded binding protein encoded by mtss-1, whose promoter was used as transcriptional reporter in the screen. Further, RNA sequencing data indicate that W04D2.4 indirectly regulates expression of mitochondrial DNA via control of genes functionally related to mitochondrial replication and translation machineries. We also demonstrate that from all interventions targeting cytosolic translation, MTSS-1 levels are elevated only upon knockdown of genes encoding cytosolic ribosomal proteins. Reduction of ribosomes leads to increased sptf-3 translation, most likely in an internal ribosome entry side (IRES) mediated manner, eventually inducing mtss-1 expression. Moreover, we identify a novel role for SPTF-3 in the regulation of mitochondrial unfolded stress response (UPRmt) activation, but not endoplasmatic reticulum or oxidative stress responses. Taken together, this study identifies two transcription factors previously not associated with mitochondrial biogenesis and UPRmt in C. elegans, establishing a basis for further investigation of mito-nuclear interactions.
Resumo:
Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self- healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self-healing coatings that readout when damage has occurred.
Resumo:
Pele, ossos, espinhas, entre outros, separados durante o processamento de produtos cárneos podem ser uma boa fonte de proteína, especialmente de colágeno. Para obtenção de colágeno nativo a partir de ossos é necessário um tratamento prévio de desproteinização e desmineralização. Portanto, o objetivo deste trabalho foi determinar os melhores parâmetros para a desmineralização de ossos de pescado e frango utilizando soluções de HCl e EDTA um complexante de íons metálicos. O melhor efeito da desmineralização foi obtido com solução de HCl 1,0 mol/L. Após 48 h de extração, 99,4 e 95,4% das substâncias minerais foram solubilizadas para os ossos de pescado e para ossos de frango, respectivamente. Paralelamente, a menor perda de colágeno também foi observada nessas condições. O processo realizado empregando soluções de EDTA foi menos eficaz do que com solução de HCl. Após 48 h de extração com EDTA 0,1 mol/L, 37,5 e 32,4% dos compostos minerais foram removidos dos ossos de pescado e dos ossos de frango, respectivamente. Uma maior eficiência foi alcançada com solução de EDTA 0,5 mol/L. O rendimento do processo foi de cerca de 66,6% a partir dos ossos de pescado e 70,6% a partir os ossos de frango. A desmineralização com EDTA não provocou perda de colágeno.
Resumo:
Objective- This study investigated whether differences exist in atherogen-induced migratory behaviors and basal antioxidant enzyme capacity of vascular smooth muscle cells (VSMC) from human coronary (CA) and internal mammary (IMA) arteries. Methods- Migration experiments were performed using the Dunn chemotaxis chamber. The prooxidant [NAD(P)H oxidase] and antioxidant [NOS, superoxide dismutase, catalase and glutathione peroxidase] enzyme activities were determined by specific assays. Results- Chemotaxis experiments revealed that while both sets of VSMC migrated towards platelet-derived growth factor-BB (1-50 ng/ml) and angiotensin II (1-50 nM), neither oxidized-LDL (ox-LDL, 25-100 ïÂ�Âg/ml) nor native LDL (100 ïÂ�Âg/ml) affected chemotaxis in IMA VSMC. However, high dose ox-LDL produced significant chemotaxis in CA VSMC that was inhibited by pravastatin (100 nM), mevastatin (10 nM), losartan (10 nM), enalapril (1 ïÂ�ÂM), and MnTBAP (a free radical scavenger, 50ïÂ� ïÂ�ÂM). Microinjection experiments with isoprenoids i.e. geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) showed distinct involvement of small GTPases in atherogen-induced VSMC migration. Significant increases in antioxidant enzyme activities and nitrite production along with marked decreases in NAD(P)H oxidase activity and O2 .- levels were determined in IMA versus CA VSMC. Conclusions- Enhanced intrinsic antioxidant capacity may confer on IMA VSMC resistance to migration against atherogenic agents. Drugs that regulate ox-LDL or angiotensin II levels also exert antimigratory effects.
Resumo:
Objective: Excess levels of free radicals such as nitric oxide (NO) and superoxide anion (O2-)are associated with the pathogenesis of endothelial cell dysfunction in diabetes mellitus. This study was designed to investigate the underlying causes of oxidative stress in coronary microvascular endothelial cells (CMEC) exposed to hyperglycaemia. Methods: CMEC were cultured under normal (5.5 mmol/L) or high glucose (22 mmol/L)concentrations for 7 days. The activity and expression (protein level) of eNOS, iNOS, NAD(P)H oxidase and antioxidant enzymes, namely, superoxide dismutase (SOD), catalase and glutahione peroxidase (GPx) were investigated by specific activity assays and Western analyses,respectively while the effects of hyperglycaemia on nitrite and O2 - generation were investigated by Griess reaction and cytochrome C reduction assay, respectively. Results: Hyperglycaemia did not alter eNOS or iNOS protein expressions and overall nitrite generation, an index of NO production. However, it significantly reduced the levels of intracellular antioxidant glutathione by 50% (p<0.05) and increased the protein expressions and/or activities of p22-phox, a membrane-bound component of pro-oxidant NAD(P)H oxidase and antioxidant enzymes (p<0.05). Free radical-scavengers, namely, Tiron and MPG (0.1-1 mol/L) reduced hyperglycaemia-induced antioxidant enzyme activity and increased glutathione and nitrite generation to the levels observed in CMEC cultured in normoglycaemic medium (p<0.01). The differences in enzyme activity and expressions were independent of the increased osmolarity generated by high glucose levels as investigated by using equimolar concentrations of mannitol in parallel experiments. Conclusions: These results suggest that hyperglycaemia-induced oxidative stress may arise in CMEC as a result of enhanced prooxidant enzyme activity and diminished generation of 3 antioxidant glutathione. By increasing the antioxidant enzyme capacity CMEC may protect themselves against free radical-induced cell damage in diabetic conditions. The definitive version is available at http://www.blackwell-synergy.com
Resumo:
A contaminação fúngica acarreta alterações na qualidade nutricional e no valor econômico de produtos alimentícios podendo causar danos patológicos em plantas, animais e humanos. A identificação da atividade antioxidante, antifúngica e antimicotoxinas, em extratos de microalgas com propriedade de inibir a multiplicação de fungos e subseqüente produção de micotoxinas abre a perspectiva de empregar substâncias mais eficientes e com maior ação específica contra estes microorganismos. Entre os compostos com propriedades inibidoras de radicais livres, de crescimento fúngico e produção de micotoxinas, destacam-se os compostos fenólicos, que podem inibir a atividade metabólica microbiana, dificultando a atividade de enzimas. Neste estudo foram avaliados o poder de inibição de multiplicação fúngica de Rhizopus oryzae e Aspergillus flavus pelos extratos fenólicos de Chlorella sp. e Spirulina platensis, bem como sua atividade antioxidante, e a atividade antimicotoxinas da última microalga contra Aspergillus flavus. O conteúdo de fenóis totais foi em média 1000 µgfenóis/g Spirulina platensis e 600 µgfenóis/g Chlorella sp., sendo que o acido gálico e o cafeíco foram identificados como compostos majoritários na Spirulina platensis. As determinações de glicosamina (parede celular) e ergosterol (membrana celular) mostraram-se bons indicativos do desenvolvimento microbiano permitindo uma boa estimativa da inibição dele. O extrato fenólico de Spirulina platensis apresentou capacidade de inibir cerca de 50% a formação da parede e da membrana celular para ambos os fungos estudados e de 100% a produção de aflatoxina B1 até o 10º dia de cultivo do Aspergillus flavus. Além disso, o extrato metanólico de Spirulina platensis inativou 53,5% o DPPH reativo, limitou o escurecimento enzimático ocasionado pela peroxidase em 55% e inibiu a peroxidação lipídica em 46% após 14 dias de armazenamento sob luz. Estes resultados mostram que a ação antifúngica, antimicotoxinas e antioxidante está naturalmente presente em alguns tecidos microbianos e que encontrar a forma de extraí-los e aplicá-los como conservantes alimentícios é muito promissor para substituição aos antifúngicos e outros conservantes químicos.
Resumo:
Quando produtos alimentícios e especiarias são contaminados por micotoxinas é quase impossível detoxificar utilizando processos usuais da indústria de alimentos ou durante o preparo doméstico. Por isso, controlar o crescimento do fungo e a produção de toxinas é uma demanda para garantir a segurança alimentar. Os agrotóxicos são rotineiramente utilizados como estratégia para proteger as plantas de doenças provocadas pela contaminação fúngica. No entanto, eles estão associados a efeitos adversos ao sistema nervoso central e periférico, têm ação imunodepressora e são cancerígenos. Em virtude disso, o objetivo deste trabalho foi estudar a inibição do desenvolvimento, do potencial toxigênico e da expressão gênica de linhagens do Complexo Fusarium graminearum por compostos naturais comparativamente aos fungicidas azoxistrobina e trifloxistrobina. Do farelo de arroz, foram extraídos o γ-orizanol e os ácidos fenólicos (EFF). Das sementes de nim foram extraídos os ácidos fenólicos (EFN), totalizando três extratos naturais. A capacidade antioxidante dos extratos foi verificada pelo consumo do radical livre DPPH• , capacidade de captura do radical ABTS●+, redução do ferro e inibição da oxidação enzimática. Os mecanismos de inibição de três linhagens de F. graminearum foram avaliados através da determinação de compostos estruturais (glicosamina e ergosterol) e da atividade de enzimas do metabolismo primário (α- amilase e proteases). Foram determinadas as micotoxinas de Fusarium: deoxinivalenol (DON), 15 acetildeoxinivalenol (15AcDON), 3 acetildeoxinivalenol (3AcDON), nivalenol (NIV) e zearalenona (ZEA). A expressão dos genes Tri1 e Tri5 foi determinada a fim de verificar se ocorria modificação da expressão gênica nas linhagens do Complexo F. graminearum ocasionada pela presença dos antifúngicos. O EFF apresenta atividade antioxidante destacada em relação aos demais extratos naturais para inibir a iniciação do processo, a propagação do radical livre e a catálise enzimática. A presença dos compostos naturais mostrou efeito promissor como antifúngico para as linhagens, sendo que a concentração necessária para inibir 50% do crescimento radial das colônias (MIC50) foi 0,9 g/kg para γ-orizanol; 0,032 g/kg para EFF e 0,037 g/kg para EFN, portanto, os extratos fenólicos são mais eficazes para inibição de F. graminearum do que o γ-orizanol. Os extratos naturais afetaram as atividades das enzimas α-amilase e proteases. Também ocorreu a redução da formação de componentes estruturais (glicosamina e ergosterol). Os extratos naturais se destacaram pela capacidade de inibição de micotoxinas produzidas pela biomassa fúngica, com destaque para o EFN sobre a produção de DON, 15AcDON, 3AcDON e ZEA. Sendo assim, é possível dizer que há uma relação direta entre a atividade antioxidante na inibição do fungo e na manifestação do seu potencial toxigênico. Além disso, esse estudo contribuiu com a elucidação do mecanismo de ação dos antifúngicos naturais estudados. Ocorre modificação na expressão gênica quando a linhagem é submetida ao tratamento com antifúngico, havendo uma relação direta entre a expressão do gene Tri5 e a produção de DON.
Resumo:
The southern region of Brazil, especially the states of Parana and Santa Catarina stand out for growing grapes and apples for fresh consumption and in order to add value to these products, process the material for the production of wine, juices and jellies . As a result large quantities of by-products, such as peels, seeds and pulp are produced becoming environmental problems. Studies reuse of these by-products have attracted interest because they have shown a high biological potential, due to the presence of high levels of phenolic compounds, which are associated with a lower incidence of disease caused by oxidative stress, due to its antioxidant, antiinflammatory and antibacterial properties. Currently, few studies are presented on the phenolic composition and biological potential of waste grape variety Bordô (Vitis labrusca) and apple (Malus domestica) Gala variety, cultivated in southern Brazil. Within this context, the objectives of this study were: compare the efficiency of solidliquid and liquid-liquid extraction, perform the optimization and validation of analytical methodology by HPLC-DAD for the separation, identification and quantification of multiclass phenolic compounds, evaluate the activity antioxidant by sequestering methods of free radical 2,2-diphenyl-1 picrilhidrazina (DPPH) and 2,2-azino-bis (3- ethyl-benzthiazoline-6-sulphonic acid) (ABTS) solution, reduction of Fe3+ in Fe2+ method (FRAP), ORAC, RP-HPLC-ABTS online, Rancimat and determination of total phenolics three agro-industrial byproducts, pomace and stems grape Bordô produced in Paraná Southwest region and Gala apple pomace coming from the Santa Catarina West. Optimization and validation of chromatographic method showed satisfactory quality parameters for the compounds of interest and the solidliquid extraction was more efficient in extracting phenolic evaluated. The three byproducts evaluated showed significant levels of phenolic compounds when analyzed by HPLC, especially flavonoids, catechin and epicatechin besides that showed significant antioxidant capacity. The grape stems extract had the highest sequestration capacity of DPPH and ABTS radical and reduced iron, and high content of phenolic compounds. The apple pomace extract showed the best response to the Rancimat method, which indicates a high potential to protect the oil from lipid oxidation, was no significant difference when compared to synthetic antioxidant TBHQ. The results of this study showed that the agro-industrial coproducts analyzed are rich in phenolic compounds of high antioxidant capacity and therefore must be better explored by the food and pharmaceutical industries.
Resumo:
Natural resources like plants are currently used all over developed and under developed countries of the world as traditional home remedies and are promising agents for drug discovery as they play crucial role in traditional medicine. The use of plants for medicinal purpose usually varies from country to country and region to region because their use depends on the history, culture, philosophy and personal attitudes of the users (Ahmad et al., 2015). The use of plants and plant products as drugs predates the written human history (Hayta et al., 2014). Plants are a very important resource for traditional drugs and around 80% of the population of the planet use plants for the treatment of many diseases and traditional herbal medicine accounts for 30-50% of the total medicinal consumption in China. In North America, Europe and other well-developed regions over 50% of the population have used traditional preparations at least once (Dos Santos Reinaldo et al., 2015). Medicinal plants have been used over years for multiple purposes, and have increasingly attract the interest of researchers in order to evaluate their contribution to health maintenance and disease’s prevention (Murray, 2004). Recently between 50,000 and 70,000 species of plants are known and are being used in the development of modern drugs. Plants were the main therapeutic agents used by humans from the 19th century, and their role in medicine is always topical (Hayta et al., 2014). The studies of medicinal plants are rapidly increasing due to the search for new active molecules, and to improve the production of plants or bioactive molecules for the pharmaceutical industries (Rates, 2001). Several studies have been reported, but numerous active compounds directly responsible for the observed bioactive properties remain unknown, while in other cases the mechanism of action is not fully understood. According to the WHO 25% of all modern medicines including both western and traditional medicine have been extracted from plants, while 75% of new drugs against infective diseases that have arrived between 1981 and 2002 originated from natural sources, it was reported that the world market for herbal medicines stood at over US $60 billion per year and is growing steadily (Bedoya et al., 2009). Traditional medicine has an important economic impact in the 21st century as it is used worldwide, taking advantage on the low cost, accessibility, flexibility and diversity of medicinal plants (Balunas & Kinghorn, 2005).
Resumo:
In recent years the interest in naturally occurring compounds has been increasing worldwide. Indeed, many of the bioactive compounds currently used as medicines have been synthesized based on the structure of natural compounds [1]. In order to obtain bioactive fractions and subsequently isolated compounds derived from natural matrices, several procedures have been carried out. One of these is to separate and assess the concentration of the active compound(s) present in the samples, a step in which the chromatographic techniques stand out [2]. In the present work the mushroom Sui/Ius granulatus (L.) Roussel was chemically characterized by chromatographic techniques coupled to different detectors, in order to evaluate the presence of nutritional and/or bioactive molecules. Some hydrophilic compounds, namely free sugars, were identified by high performance liquid chromatography coupled to a refraction index detector (HPLC-RI), and organic and phenolic acids were assessed by HPLC coupled to a photodiode array detector (HPLC-PDA). Regarding lipophilic compounds, fatty acids weredetermined by gas chromatography with a flame ionization detector (GC-FID) and tocopherols by HPLC-fluorescence detection. Mannitol and trehalose were the main free sugars detected. Different organic acids were also identified (i.e. oxalic, quinic and fumaric acids), as well as phenolic acids (i.e. gallic and p-hydroxybenzoic acids) and the related compound cinnamic acid. Mono- and polyunsaturated fatty acids were the prevailing fatty acids and a-, ~- and ~-tocopherol were the isoforms of vitamin E detected in the samples. Since this species proved to be a source of biologically active compounds, the antioxidant and antimicrobial properties were evaluated. The antioxidant activity was measured through the reducing power, free radical's scavenging activity and lipid peroxidation inhibition of its methanolic extract, and the antimicrobial activity was also tested in Gram positive and Gram negative bacteria and iri different fungi. S. granulatus presented antioxidant properties in all the performed assays, and proved to inhibit the growth of different bacterial and fungal strains. This study is a first step for classifying S. granulatus as a functional food, highlighting the potential of mushrooms as a source of nutraceutical and biologically active compounds.
Resumo:
Angiotensin II (Ang II) and platelet-derived growth factor-BB (PDGF-BB) are associated with excessive cell migration, proliferation and many growth-related diseases. However, whether these agents utilise similar mechanisms to trigger vascular pathologies remains to be explored. The effects of Ang II and PDGF-BB on coronary artery smooth muscle cell (CASMC) migration and proliferation were investigated via Dunn chemotaxis assay and the measurement of [3H]thymidine incorporation rates, respectively. Both atherogens produced similar degrees of cell migration which were dramatically inhibited by mevastatin (10 nM). However, the inhibitory effects of losartan (10 nM) and MnTBAP (a free radical scavenger; 50 μM) were found to be unique to Ang II-mediated chemotaxis. In contrast, MnTBAP, apocynin (an antioxidant and phagocytic NADPH oxidase inhibitor; 500 μM), mevastatin and pravastatin (100 nM) equally suppressed both Ang II and PDGF-BB-induced cellular growth. Although atherogens produced similar changes in NADPH oxidase, NOS and superoxide dismutase activities, they differentially regulated antioxidant glutathione peroxidase activity which was diminished by Ang II and unaffected by PDGF-BB. Studies with signal transduction pathway inhibitors revealed the involvement of multiple pathways i.e. protein kinase C, tyrosine kinase and MAPK in Ang II- and/or PDGF-BB-induced aforementioned enzyme activity changes. In conclusion, Ang II and PDGF-BB may induce coronary atherosclerotic disease formation by stimulating CASMC migration and proliferation through agent-specific regulation of oxidative status and utilisation of different signal transduction pathways.
Resumo:
The present study aimed to characterize the extracts prepared from Pimpinella anisum L. (anise) and Coriandrum sativum L. (coriander) (Apiaceae plants) seeds in terms of phenolic composition, and to correlate the obtained profiles with the antioxidant activity. Anise gave the highest abundance in phenolic compounds (42.09± 0.11 mg/g extract), mainly flavonoids (28.08±0.17 mg/g extract) and phenolic acids (14.01±0.06 mg/g extract), and also the highest antioxidant potential, measured by the ability to inhibit lipid peroxidation and β-carotene bleaching, the reducing power and the free radical scavenging activity. Apigenin and luteolin derivatives, as also caffeoylquinic acid derivatives seem to be directly related with the higher in vitro antioxidant potential of the anise extract. In contrast, the lower antioxidant potential of coriander seems to be due to its lower abundance in phenolic compounds (2.24±0.01 mg/g extract). Further studies are necessary to evaluate the in vivo antioxidant potential of the tested extracts, but the in vitro experiments already performed highlight them as potential health promoters.
Resumo:
The brain is exposed throughout life to oxidative stress, and certain diseases of the brain and nervous system are thought to involve free radical processes and oxidative damage. This study is aimed at evaluating the effect of kolaviron on kolanut-induced oxidative stress in developing rat brain. Twenty-five adult pregnant Wistar rats weighing between 160 and 180g were used for the experiment. They were randomly divided into five groups of five animals each. The animals were fed with standard diets of mice cubes and water provided ad libitum. The control rats received water and cornoil, while the experimental animals received 200 mg/kg body weight of kolanut (kn), 200 mg/kg of kolaviron (kv), and 200 mg/kg body weight of vitamin E which served as a standard antioxidant with cornoil as vehicle orally in pre- and post-natal life. After birth, gross morphometry and behavioural changes of the pups of days 1, 7, 14, 21 and 28 postpartum were evaluated. Blood samples were collected from pups of day 21 for hematological, liver and renal function analyses, while the brains of pups of day 21 postpartum were preserved in phosphate buffer at a temperature of 4oC and pH 7.4 for biochemical analysis. There were significant alterations in the gross morphometry and behavioural parameters studied in the treated animals compared with the control at p< 0.05. There were elevated levels of RBC, WBC and platelets in the treated group compared with the control at p< 0.05. However, no significant change was observed in the PCV, Hb, liver and renal function parameters studied at p>0.05. A non-significant increase in levels of malondialdehyde, MDA, a bye-product of lipid peroxidation in the kolanut group was observed. However, administration of kolaviron and vitamin E non-significantly (p>0.05) reversed these changes. In conclusion, maternal consumption of kolanut induced mild oxidative stress and the administration of kolaviron and vitamin E decreased the rate at which kolanut induced oxidative stress in developing rat brain.
Resumo:
The phytochemical profiles and bioactivities of red, white and pink globe amaranth (Gomphrena haageana K., Gomphrena globosa var. albiflora and Gomphrena sp., respectively), much less studied than the purple species (G. globosa L.), were compared. The chemical characterization of the samples included the analysis of macronutrients and individual profiles of sugars, organic acids, fatty acids, tocopherols, and phenolic compounds. Their bioactivity was evaluated by determining the antioxidant and anti-inflammatory activities; the absence of cytotoxicity was also determined. Red and pink samples showed the highest sugar content. Otherwise, the white sample gave the highest level of organic acids, and together with the pink one showed the highest tocopherol and PUFA levels. Quercetin-3-O-rutinoside was the major flavonol in white and pink samples, whereas a tetrahydroxy-methylenedioxyflavone was the major compound in the red variety, which revealed a different phenolic profile. The pink globe amaranth hydromethanolic extract revealed the highest antioxidant activity, followed by those of red and white samples. The anti-inflammatory activity was more relevant in red and pink varieties. None of the samples presented toxicity in liver cells. Overall, these samples can be used in bioactive formulations against inflammatory processes and in free radical production.